Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообменные аппараты пластинчатые

    В разделе Тепловые процессы переработана методика расчета теплообменных аппаратов, рассмотрены конструкции интенсивных теплообменников (пластинчатых, с оребренными поверхностями) и даны сведения о теплообмене в псевдоожиженном слое. [c.10]

    Выравнивание потока ускоряется при наличии сопротивления, рассредоточенного по сечению. При этом, как будет показано ниже, чем больше коэффициент сопротивления распределительного устройства тем значительнее степень выравнивания скоростей, и чем короче устройство, тем меньше протяженность пути, на котором происходит растекание потока по сечению. Постепенное выравнивание поля скоростей по сечению имеет место, например, в пластинчатых электрофильтрах (если вход потока в межэлектродные пространства этих аппаратов осуществляется с одинаковыми средними скоростями, хотя и с неравномерным для каждого пространства профилем скорости), в полых скрубберах и в других аналогичных аппаратах. Более быстрое, но также постепенное выравнивание поля скоростей происходит, например, при внешнем обтекании нескольких пучков труб в теплообменных аппаратах, при обтекании изделий в сушилах, в промышленных печах и др. [c.73]


Рисунок 1.10 - Блочный теплообменник из графита 1 - фафитовые блоки, 2 - вертикальные круглые каналы, 3 - горизонтальные круглые каналы, 4 - боковые переточные камеры, 5 - торцевые крышки Основной отличительной особенностью пластинчатых теплообменных аппаратов от традиционных трубчатых аппаратов является форма поверхности теплообмена и каналов для теплообменивающихся сред. В пластинчатом теплообменном аппарате (рисунок 1.11) поверхность теплообмена представляет собой гофрированные пластины, которые располагают параллельно друг другу таким образом, чтобы между ними оставались щелевидные каналы для рабочих сред. При таком конструктивном решении теплопередающая поверхность может быть выполнена из листового материала небольшой толщины, а каналы для теплооб- Рисунок 1.10 - <a href="/info/534067">Блочный теплообменник</a> из графита 1 - фафитовые блоки, 2 - вертикальные круглые каналы, 3 - горизонтальные круглые каналы, 4 - боковые переточные камеры, 5 - торцевые крышки Основной <a href="/info/686460">отличительной особенностью</a> <a href="/info/320609">пластинчатых теплообменных аппаратов</a> от традиционных <a href="/info/144851">трубчатых аппаратов</a> является <a href="/info/587317">форма поверхности</a> теплообмена и каналов для теплообменивающихся сред. В <a href="/info/320609">пластинчатом теплообменном аппарате</a> (рисунок 1.11) поверхность теплообмена представляет <a href="/info/1795776">собой</a> <a href="/info/1471155">гофрированные пластины</a>, которые располагают параллельно <a href="/info/16133">друг другу</a> <a href="/info/461013">таким образом</a>, чтобы между ними оставались щелевидные каналы для <a href="/info/311364">рабочих сред</a>. При таком <a href="/info/1272017">конструктивном решении</a> <a href="/info/320615">теплопередающая поверхность</a> может быть выполнена из <a href="/info/392450">листового материала</a> небольшой толщины, а каналы для теплооб-
    Теплообменные аппараты пластинчатого типа [c.153]

    Пластинчатые теплообменные аппараты  [c.2]

    Все теплообменные аппараты пластинчато-реб-ристого типа, кроме теплообменника кислорода высокого давления. [c.19]

    Рассмотренные конструкции пластинчатых теплообменных аппаратов говорят о том, что аппараты этого типа обладают рядом преимущественных достоинств  [c.32]

    По конструктивному признаку соединения пластин между собой пластинчатые теплообменные аппараты можно разделить на три типа  [c.29]

    Уплотнительные прокладки пластинчатого теплообменника после сборки и сжатия пластин образуют две системы герметичных каналов для рабочих сред с различным направлением движения в каждой из них, пластины, между которыми рабочая среда движется только в одном направлении, составляют пакет с данной рабочей средой. Один или несколько пакетов, сжатых между пластинами, образуют секцию теплообменного аппарата. Каждая пластина в аппарате с одной стороны находится в соприкосновении с охлаждающей средой, а с другой с охлаждаемой. Чередование межпластинчатых каналов для каждой из сред в пакете осуществляется соответствующим набором пластин, отличающихся между собой расположением уплотнительных прокладок. [c.30]

    Таким образом, изменяя число блоков, можно в полностью изготовленном теплообменном аппарате менять не только число ходов и скорость рабочей среды, но и поверхность теплообмена. При выходе из строя одного из блоков он может быть легко заменен, что значительно повышает эксплуатационную надежность сварного пластинчатого теплообменного аппарата. [c.32]


    Пластинчатые теплообменные аппараты характеризуются высоким коэффициентом теплопередачи благодаря высокой турбулентности потока, малой ширине зазора между пластинами и рифлению на них. [c.33]

    Одним из основных достоинств пластинчато-ребристых теплообменных аппаратов является их компактность, во много раз превышающая компактность теплообменников других видов /8/. [c.33]

    Как видно из литературного обзора, наиболее перспективным видом данного типа оборудования являются пластинчатые теплообменники. Поэтому была проведена патентная проработка по этим аппаратам в целях поиска подходящего теплообменного аппарата для замены старого оборудования на установке. Кроме того, была проведена патентная проработка для выбора нового катализатора. [c.33]

    Перечисленные выше недостатки теплообменных аппаратов требуют их замены. Как было сказано ранее, сегодня отдается предпочтение пластинчатым теплообменникам, в отличие от кожухотрубчатых, и это неудивительно, так как преимущества пластинчатых теплообменных аппаратов неоспоримы  [c.54]

    С учетом этих положений и изложенных выше теоретических основ процесса был разработан метод расчета пластинчатых теплообменных аппаратов, комбинированных из пластин с различным углом наклона гофр, который включен в отраслевой расчетно-технический материал, изданный Минхиммашем в 1986 г. (РД РТМ 26-01-107 - 86). [c.365]

    В зависимости от физического состояния теплоносителей различают теплообменные аппараты парожидкостыые, жидкостно — жидкостные, газожидкостные, газо —газовые и парогазовые. В зависимости от конфигурации поверхности теплообмена теплообменные аппараты разделяют на трубчатые с прямыми трубами, змеевиковые, ребристые, спиральные, пластинчатые, а по компоновке ее — на кожухотрубчатые, типа труба в трубе , оросительные (не имеющие ограничивающего корпуса) и т. д. Наиболее распространены кожухотрубчатые теплообменники. [c.51]

    Анализ состояния и тенденций развития мирового производства пластинчатых теплообменных аппаратов на примере ведущих изготовителей (табл. 7.3) показал, что  [c.349]

    Аналогично рассчитывают контур естественной циркуляции, образованной опускным каналом и вертикальным кипятильником, в котором кипение жидкости происходит при ее движении внутри труб или в каналах более сложной формы, например при использовании в качестве кипятильников пластинчатых теплообменных аппаратов. Включение таких кипятильников в циркуляционный контур массообменного аппарата показано на рис. 9.6, [c.345]

    Полученные выше зависимости для расчета коэффициентов теплоотдачи и гидравлического сопротивления в щелевидных каналах различной геометрической формы позволили разработать метод расчета пластинчатых теплообменных аппаратов с параллельным включением каналов неодинаковой геометрической формы. [c.361]

    Общая площадь поверхности теплопередачи в пластинчатом теплообменном аппарате составляет  [c.364]

    Пластинчатые теплообменные аппараты [c.232]

    Пластинчатые теплообменные аппараты. Каталог. М. ЦИНТИХимнефтемаш. 1983. [c.341]

    Таким образом, создание пластин типа В с увеличенным до 70° углом наклона гофр, образующих каналы типа Б с большими коэффициентами гидравлического сопротивления, целесообразно не только с точки зрения удовлетворения условий эксплуатации, но и позволяет повысить теплоэнергетические показатели пластинчатых теплообменных аппаратов. [c.365]

    Пластинчатые теплообменные аппараты. Каталог УкрНИИхиммаш. — М. Изд. [c.662]

    Сравнение эффективности конвективных теплообменных аппаратов различной конструкции показало, что особое место среди них занимают пластинчатые теплообменные аппараты (ПТА), изготавливаемые методом холодной штамповки из тонкого листового металла. Интенсификация теплообмена в них происходит за счет высокой степени искусственной турбулизации потока, движущегося тонкими слоями в узких межпластин-ных каналах сложной геометрической формы при многократном изменении направления движения. [c.337]

    Узел теплообменного аппарата. Теплообменные аппараты (теплообменники) классифицируются по характеру обменивающихся теплотой сред. Теплообмен может происходить между двумя жидкими средами, между паром (газом) и жидкостью, между двумя газовыми средами. По принципу действия теплообменники подразделяются на аппараты непосредственного смешения и аппараты поверхностного типа. Наиболее часто используемые на НПЗ и НХЗ аппараты поверхностного типа подразделяются по способу компоновки в них теплообменной поверхности на следующие виды типа труба в трубе кожухотрубчатые пластинчатые аппараты воздушного охлаждения. [c.93]

    Гидравлическое сопротивление определяют для аппарата известной конструкции и размеров. При этом расчет, например, кожухотрубчатого аппарата значительно отличается от аппарата воздушного охлаждения, пластинчатого или спирального теплообменника. В специальной литературе для каждого типа теплообменных аппаратов приводится методика гидравлического расчета, учитывающая специфику их устройства и работы. Иногда на основе обработки экспериментальных данных по гидравлическому сопротивлению теплообменников приводятся эмпирические уравнения, которые имеют ограниченное применение и пригодны только для аппаратов данного типа. [c.617]


    Элементные газоохладители изготовляются вертикальными или горизонтальными. В корпусе охладителя имеются вставные теплообменные элементы, состоящие из оребренных труб с насаженными пластинчатыми ребрами или из труб с накатанными высокими ребрами (рис. 9.4). Внутри труб течет вода. Поток газа, омывающий трубки, не имеет поворотов, а на входе и выходе имеются буферные емкости, что приводит к малым гидравлическим потерям давления. В конструкции элементного охладителя важным является уплотнение теплообменного аппарата в корпусе, чтобы предотвратить протечки газа мимо охлаждающего элемента. Во избежание значительных вибраций частота свободных колебаний труб элементов не должна совпадать или быть кратной частоте вращения коленчатого вала компрессора. [c.243]

    В ряде процессов химической и других отраслей промышленности получили большое распространение особые теплообменные аппараты — пластинчатые теплообменникиГлавной особенностью их является конструкция теплопередающей стенки, позволя-Раст ритель полностью разбирать аппа- [c.358]

    Реакторы с поверхностью теплообмена выполняются в виде трубчатых теплообменных аппаратов с насыпанным в трубки или межтрубное пространство катализатором, а также в виде непрерывных змеевиков с внешним обогревом или охлаждением. Применяются также пластинчатые реакторы. Реже применяются цилиндрические аппараты с наружной охлаждаюЕцей или нагреваюгцей рубашкой. [c.276]

    Значения поправочного коэффициента г з для рааличных схсм движения теплоносителей приведены на графиках рис. 1-1—1-11, где они даны в зависимости от характера взаимного направления потоков рабочих сред. При каждом из графиков и-меетоя соответствующая схема движения рабочих сред. Штриховка на этих схемах указывает на разделение потоков рабочих рред на отщельные ст>руи. Рис. 1-7, например, соответствует перекрестному пластинчатому теплообменному аппарату, рис. 1-8 —пучку труб, рис. 1-9 —одной трубе в поперечном потоке. [c.16]

    В результате предложена замена старого катализатора на более современный и замена кожухотрубчатых теплообменников на один пластинчатый теплообменный аппарат Пакинокс. [c.3]

    Предложена замена кожухотрубчатых теплообменных аппаратов на пластинчатые, так как их последние модификации наиболее совершенны, кроме того, они более компактны и имеют меньший вес, по сравнению с кожухотрубчатыми. В данном дипломном проекте рассмотрена возможность замены шести газосырьевых кожухотрубчатых теплообменных аппаратов на пластинчатый теплообменник "Пакинокс". [c.8]

    В пластинчатом теплообменнике коэффициенты теплопередачи выше, чем в кожухотрубчатом. Это происходит из-за малой величины зазоров между пластинами, рифления пластин (это создает искусственную турбуляцию потоков), а также благодаря гибкости пластинчатых теплообменников, дающей возможность осуществлять такую схему ходов, которая позволяет максимально использовать преимущество противоточного движения рабочих сред. Все это приводит к уменьшению капитальных затрат на пластинчатый теплообменный аппарат (по сравнению с кожухотрубчатым). [c.29]

    В дипломном проекте, как говорилось ранее, предлагается произвести замену шести кожухотрубчатых теплообменников на один пластинчатый теплообменный аппарат "Пакинокс". Для этого необходимо рассчитать поверхность теплообмена пластинчатого теплообменника. При определении этой величины исходили из известных по регламенту значений поверхности теплообмена кожухотрубчатых теплообменных аппаратов, которые равны  [c.58]

    Следовательно, предложенные в главах 6—8 методы расчета теплопередачи в элементарных схемах тока, рядах и комплексах аппаратов положены в основы единой системы теплового расчета теплообменников и использованы в современных алгоритмах оптимизации теплообменных аппаратов кожухотрубчатых (шифр ОКТА), витых (шифр ОВТА), пластинчатых (шифр ОПТА), воздушного охлаждения (шифр ОАВО), труба в трубе (шифр ОТТТ). Эти алгоритмы разработаны в Институте газа АН УССР (г. Киев) при участии Уфимского филиала ВНИИНефтемаш и других организаций. [c.213]

    Анализ парамефов работы кожухофубчатых теплообменников в химической и смежных офаслях промышленности показывает, что около 70% теплообменников применяется для давлений до 1,0 МПа и температур до 200 °С. Для этих условий возможно эффективное использование новых профессивных пластинчатых теплообменных аппаратов (ПТА), которые имеют [c.334]

    Пластинчатые теплообменные аппараты (ПТА) разборной консфукции начали применяться в 1920-х гг. в пищевой промышленности. Они состояли из литых или выфрезерованных ка-нальчатых пластин. Производство штампованных теплопередающих пластин было освоено в 1930-40 гг. Дальнейшее совершенствование ПТА связано с применением их в химической промышленности, когда пофебовалось их модифицировать применительно к разнообразным условиям химико-технологических процессов. Благодаря высоким теплоэнергетическим, экономическим и эксплуатационным показателям эти аппараты в настоящее время нашли широкое применение в пищевой, химической, нефтехимической, микробиологической и других Офаслях промышленности. [c.346]

    Передача тепла в теплообменных аппаратах осуществляется от среды, имеющей более высокую температуру, к среде с более низкой температурой. Движущей силой при теплообмене является разность температур сред. Теплообмен осуществляется за счет конвекции, теплопроводности и теплоизлучения. В большинстве случаев срёды в теплообменных аппаратах не смешиваются между собой и отделены друг от друга листом (в спиральных и пластинчатых аппаратах и аппаратах с рубашкой) или стенкой труб (в кожухотрубчатых аппаратах), их движение осуществляется параллельно или противотоком по двум или более (при нескольких теплоносителях) пространствам аппарата. [c.341]

    По виду теплопередающей поверхности указанные аппараты подразделяются на две основные группы аппараты с трубчатой поверхностью теплообмена и аппараты с поверхностью теплообмена из листового материала. К первой группе относятся аппараты емкостного типа со встроенными змеевиками или трубными пучками другого вида, теплообменники типа труба в трубе , кожухотрубчатые теплообменные аппараты жесткой конструкции с неподвижными трубными решетками и нежесткой конструкции с температурным компенсатором на кожухе, с плавающей головкой или с температурным компенсатором на трубном пучке, а также с трубами и-образной формы или с витыми трубами. Ко второй группе относятся аппараты емкостного типа с охлаждающими или греющими рубашками на корпусе, спиральные, пластинчатые и пластинчато-ребристые теплообменники. [c.335]

    По принципу действия различают теплообменные аппараты кожухотрубча-тые [29, 30) труба в трубе змеевиковые с рубашкой или погружного типа регенеративно-рекуперативные с циркулирующим твердым промежуточным теплоносителем или неподвижной насадкой системы пластинчатого, сотового, кольчатого типов либо с шипами и многие другие,системы специального назначения. [c.148]

    Р. Пластинчато-ребристые или матричные теплообменники. Матричн1)1е или пластинчато-ребристые теплообменники имеют самую компактную форму поверхности теплообмена, по крайней мере, среди обычных теплообменных аппаратов. в которых теплоносители должны быть разделены. Эти теплообменники (рис. 8) состоят из металлических листов, отделенных друг от друга поочередно гофрированными листами и перегородками. Вход н выход теплоносителя осуществляются через патрубки с перегородкой для того, чтобы предотвратить попадание одного теплоносителя в каналы, предназначенные для другого. Соответствующее размещение патрубков позволяет прокачивать через одни теплообменник более двух теплоносителей. [c.8]

    На НПЗ, как правило, применяются теплообменные аппараты поверхностного типа, которые по способу компоновки в них теплообменной поверхности подразделяются на следующие виды а) типа труба в трубе б) кожухотрубчатые б) пластинчатые г) воздушного охлаждения. В табл. 3.27 приведен перечень нормативных документов, по которым изготавливается теплообменное оборудование, а в табл. 3.28 представлены сведения о материальном исполнении основных узлов и деталей теплообменных тппаратов. [c.207]

    В пластинчатых теплообмениых аппаратах [7] площадь поверхности теплообмена образуется набором тонких штампованных теплопередающих пластин с гофрированной поверхностью. Аппараты подразделяются [c.220]

    МПа н температуре до 200 °С. Для указанных условий разработаны и серийно изготовлены теплообменные аппараты общего назначения кожухотрубчатого и спирального типов. В последнее время получают распространение пластинчатые теплообменные аппараты общего назначения. Одним из преимуществ трубчатых теплообменных аппаратов является простота конструкции. Однако коэффициент унификации узлов и деталей размерного ряда этих аппаратов, являющийся отношением числа узлов и деталей (размеры одинаковы для всего ряда) к общему числу узлов и деталей данного размерного ряда, составляет [фимерно 0,13. В то же"время этот коэффициент применительно к пластинчатым теплообменным аппаратам составляет 0,9. Удельная металлоемкость кожухотрубчатых аппаратов в 2—3 раза больше металлоемкости новых пластинчатых аппаратов. [c.173]


Смотреть страницы где упоминается термин Теплообменные аппараты пластинчатые: [c.5]    [c.95]    [c.334]    [c.80]   
Оборудование нефтеперерабатывающих заводов и его эксплуатация Изд2 (1984) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Движение рабочих сред и теплоотдача в щелевидных каналах пластинчатых теплообменных аппаратов

Компоновочный и гидромеханический расчеты пластинчатых теплообменных аппаратов

Конструкции основных элементов пластинчатых теплообменных аппаратов

О возникновении пластинчатых теплообменных аппаратов и совершенствовании их конструкций

Перечень формул для тепловых и гидромеханических расчетов пластинчатых теплообменных аппаратов

Пластинчатые и спиральные теплообменные аппараты в современной технике

Пластинчатые теплообменные аппараты Теплообменные аппараты

Пластинчатые теплообменные аппараты Теплообменные аппараты

Пластинчатые теплообменные неразборные аппараты (сварные) типа

Пластинчатые теплообменные неразборные аппараты (сварные) типа Н Теплообменные аппараты с пластинами типа

Пластинчатые теплообменные разборные аппараты тиТеплообменные аппараты с пластинами типа

Пластинчатые теплообменные разборные аппараты типа

Пластинчатые теплообменные разборные аппараты типа Р Теплообменные аппараты с пластинами типа 0,6 (угол пересечения вершин гофр

Пластинчатые теплообменные разборные аппараты типа Р со сдвоенными пластинами (полуразборные)

Пластинчатые теплообменные разборные аппараты типа Р со сдвоенными пластинами (полуразборные) Теплообменные аппараты со сдвоенными пластинами типа 0,5 (угол пересечения вершин гофр

Пример расчета и выбора оптимального пластинчатого теплообменного аппарата

Регламент проведения в зимнее время пуска, остановки и испытаний на плотность пластинчатых теплообменных аппаратов, применяемых на химических, нефтеперерабатывающих заводах, а также на газовых промыслах и газобензиновых заводах

Теплообменные аппараты пластинчатого типа

Тонкослойные пластинчатые теплообменные аппараты



© 2025 chem21.info Реклама на сайте