Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогеноводороды разделение

    Значения температуры кипения и теплоты испарения жидких галогеноводородов, приведенные в табл. 26.3, свидетельствуют о том, что наименьшая тенденция к ассоциации имеет место у хлористого водорода. Энергия связи в ряду НР — Н1 уменьшается, что обусловлено резким возрастанием числа электронов в атомах галогенов в ряду Р — I, а также уменьшением различия в энергии уровней и подуровней по мере увеличения числа электронных слоев. В результате этого уменьшается степень перекрывания орбиталей водорода и галогена и возрастает межатомное расстояние. Моменты диполей галогеноводородов в связи с уменьшением тенденции к разделению зарядов и увеличением межатомных расстояний в той же последовательности существенно уменьшаются. [c.317]


    Было показано, что экстрагируемость координационно-насыщенных внутрикомплексных соединений мало зависит от природы органического растворителя, тогда как гидратированные коорди-национно-ненасыщенные внутрикомплексные соединения крайне чувствительны к природе растворителя, используемого при экстракции. Они лучше экстрагируются полярными кислородсодержащими растворителями, замещающими молекулы воды в координационной сфере комплексов, и значительно хуже — углеводородами и галогеноводородами. Координационная ненасыщенность -центрального атома может быть удовлетворена также присоединением дополнительных молекул реагента (при высокой начальной концентрации последнего) В предельных случаях это явление позволяет производить последовательное экстрагирование элементов, образующих координационно-насыщенные и координационно-ненасыщенные комплексы с одним и тем же реагентом. В работах [51, 52, 69, 70] имеется целый ряд интересных примеров подобного рода разделений, в том числе таких металлов, как 1п и Т1, Рш и Мр. [c.46]

    Поскольку в апротонных биполярных растворителях (по крайней мере, в начале реакции) невозможно образование водородных связей с анионными основаниями, основность меняется иначе, чем в протонных растворителях (см. разд. 4.9). Поэтому в апротонных биполярных растворителях и галогенид-ионы могут играть роль вспомогательных оснований нри Е2-реакциях [26]. В согласии с обсужденными выше отношениями (см. разд. 4.9) их действие усиливается в ряду Вг < С1 < Р [27]. Так как нри этом образуется-галогеноводород, реакция может стать обратимой целесообразно ввиду этого проводить реакцию в основном биполярном апротонном растворителе, например в диметилформамиде. В протонных растворителях наблюдаются закономерности, обсуждавшиеся в предыдущей главе повышение полярности растворителя благоприятствует 8 1/Е1-реакции. Однако поскольку переходное состояние реакции отщепления протона от карбкатиона и переходное состояние Е2-реакции характеризуются большим разделением зарядов по сравнению с соответствующими нуклеофильными замещениями, заметен и обратный эффект реакции отщепления несколько подавляются при возрастании доли воды в растворителе (например, в смесях этанол/вода) [28]. [c.240]

    Хорошим методом для получения галогенидов металлов в самой низшей степени их окисления является действие галогенида металла на раскаленный металл, например действие трихлорида хрома на хром или тетрахлорида титана на титан. Недавно этим методом были получены низшие хлориды даже алюминия, для которого характерно трехвалентное состояние в соединениях. Метод довольно прост по выполнению и сводится к медленному пропусканию паров галогеноводорода или галогенида при высокой температуре через слой соответствующего металла или неметалла, взятого в виде порошка. Недостаток этого метода заключается в трудности отделения галогенида от непрореагировавшего металла. Осуществить разделение их можно путем возгонки полученного галогенида при высокой температуре в атмосфере азота или в вакууме. [c.198]


    Хроматокондуктометрическое определение серы предполагает сочетание метода газо-жидкостной хроматографии для разделения SO2 и других продуктов деструкции органических соединений (в частности, галогеноводородов) на колонке 1 л X 6 мм, заполненной хромосорбом W с 10% нанесенного на него флексолем 8N8, с поеледующим кондуктометрическим определением. Причем после окислительного разложения SO2 поглощают раствором иода после восстановительной деструкции HjS поглощают раствором нитрата ртути (I) [493]. [c.138]

    Для одновременного определения серы и галогенов в органических веществах применяется газовая хроматография (разделение) в сочетании с кондуктометрией (количестванное определение). Навеска органического вещества подвергается окислительному разложению газообразным кислородом в замкнутой системе. По окончании окисления (3—5 мин.) продукты разложения направляются потоком газа-носителя на хроматографическую колонку, где галогеноводороды задерживаются, а двуокись серы поступает в кондуктометрическую ячейку для количественной оценки. После определения серы (4 мин.) включается нагреватель на хроматографической колонке и ННа1 выдуваются во вторую кондуктометрическую ячейку. Точность определения серы и галогенов +0,2% продолжительность 15 мин. Величина навески 1 жз и более. Установлено, что для проведения полного окисления серы и галогенсодержащих органических веществ при навесках 1—3 мг вполне достаточно количества кислорода, находящегося в закрытой кварцевой пробирке размером 200 X 10 мм. Разложение органического вещества проводится автоматически двигающейся печью при 900— 1000° С. Пробирка закрывается мембранным переключателем потока газа, изготовленным из органического стекла или тефлона. [c.37]

    Обычно винильные группы, расположенные у концов цепи, присоединяют галогеноводород труднее, чем двойные связи, находящиеся в середине цепи. Нри некоторых обстоятельствах это делает возможным разделение изомеров ге ксен-2, СНд-СНз-СНз- [c.77]

    Из двух изомеров R -СВг СНа и R -СН СНВг, первый всегда присоединяет галогеноводород значительно легче, чем второй, так что в данном случае этим путем можно достигнуть разделения смеси.  [c.77]

    Важнейшим из числа органических носителей является политетрафторэтилен (ПТФЭ). Этот материал превосходит другие полимеры по термостойкости, и его можно использовать в газовой хроматографии при температурах до 200 °С. Выше указанной температуры форма частиц носителя меняется, вследствие чего падает эффективность разделения, а при более высоких температурах, начиная с 290 °С, материал разлагается, выделяя перфторизобутен (СРз)2С = Ср2, еще более ядовитый, чем фосген. Поэтому перегревания полимера до такой температуры допускать нельзя. Основным преимуществом этого материала является чрезвычайно низкая химическая активность он реагирует только с расплавленными щелочными металлами и элементным фтором и не проявляет никакой ни каталитической, ни адсорбционной активности. В связи с этим политетрафторэтилен представляет собой наилучший носитель для разделения сильнополярных и реакционноспособных соединений, которые при хроматографировании на нем дают симметричные пики (рис. IV.7—IV.9). На этом носителе можно исследовать не только спирты [37], жирные кислоты [88], хлорфенолы [89], амины, аммиак, а также воду [37, 90], но даже сероводород и диоксид серы [14] (рис. IV.7), галогеноводороды [91], трихлорид бора [87], галогениды фосфора [92], пиридин, хлорсиланы, аминосиланы [23] (рис. IV.8) и даже такие агрессивные вещества, как GIF, I2, IF3 и Вг2 [93]. [c.205]

    Неорганические соединения чаше всего анализируют методом распределительной хроматографии на непропитанной бумаге, причем роль неподвижной фазы выполняет вода. Обычно основным компонентом подвижной фазы служит какой-либо органический растворитель, содержащий в составе полярной группы азот или кислород. При разделении катионов к подвижной фазе часто добавляют комплексообразующий реагент, например галогеноводороды, бензоилацетон и т. п. Эффективность разделения катионов зависит от устойчивости комплексов, их фазового равновесия, а также от кинетики их образования. В последнее время стали широко применять ионообменную осадительную хроматографию. Для этих типов хроматографии используют пропитанную или химически обработанную бумагу. Помимо имеющихся в продаже марок ионообменной бумаги, используют также бумагу, специально пропитанную жидкими ионообменни-ками, например три-н-октиламином, неорганическими ионооб-менниками, например фосфатом циркония, органическими комплексообразующими и осаждающими реагентами, например оксином и т. д. В качестве подвижной фазы используют также водные растворы, часто с добавкой комплексообразующих реагентов. [c.142]

    Во введении к этой главе был приведен целый ряд причин, по которым химики проявляют живейший интерес к геометрии молекул. Одна из этих причин — влияние геометрии на распределение заряда в молекуле — заслуживает более подробного обсуждения. В гл. 3 йыло показано, что распределение заряда в химической связи может иногда привести к разделению заряда и возникновению электрического дипольного момента. Это означает, что один конец молекулы приобретает кажущийся отрицательный заряд, а другой — кажущийся положительный заряд. Понятно, что такое разделение заряда очень интересует другие молекулы, которые могут столкнуться с данной молекулой—наличие у молекулы дипольного момента в значительной мере определяет ее химическое поведение. Благодаря дипольным моментам появляются сильные межмолекулярные взаимодействия, от которых зависит, насколько близко две молекулы могут подойти друг к другу, наиболее вероятные ориентации при их сближении и энергия, которую необходимо затратить, чтобы снова оттянуть эти молекулы друг от друга. Эти факторы находят отражение в таких свойствах, как, например, температура кипения, температура плавления, кристаллическая структура, растворимость, легкость, с которой молекула вступает в реакцию, а также во множестве других явлений, очень важных для химии. Некоторые примеры приведены в табл. 6.5, где сопоставлены данные для галогенов и галогеноводородов. [c.186]


    Для определения бромид-ионов можно использовать обменные реакции с радиоактивными осадками. При этом получают более точные результаты, чем в случае определения хлорид-И01ЮВ. Определение бромида этим методом состоит в экстракции диэтиловым эфиром осажденного бромида ртути (II), меченного изотопом Hg, с последующим измерением у-активности эфирного раствора. Бергман и Мартин [112] разработали газохрома-тографический метод определения бромид-ионов основанный на разделении и детектировании галогеноводородов. Он пригоде для определения брома, хлора и иода в органических соединениях после их разложения. [c.366]


Смотреть страницы где упоминается термин Галогеноводороды разделение: [c.236]    [c.131]    [c.236]    [c.460]    [c.441]    [c.27]    [c.364]   
Руководство по газовой хроматографии (1969) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Галогеноводороды



© 2025 chem21.info Реклама на сайте