Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещества, применяемые г. газовой хроматографии

    Хроматография на бумаге основана на использовании в качестве иммобилизованной фазы высококачественной фильтровальной бумаги, адсорбирующей воду. В последнее время широкое распространение получила тонкослойная хроматография вместо бумаги здесь используется тонкий слой силикагеля, нанесенный на стеклянную пластинку. Этот метод гораздо удобнее хроматографии на бумаге, поскольку дает более быстрое и качественное разделение (рис. 2-34). Для разделения летучих веществ применяется газовая хроматография, основанная на [c.160]


    Для определения суммы углеводородов нефти в гидросфере широко применяют газовую хроматографию, чувствительность метода составляет 0,1 мг/л, он используется также для идентификации источника загрязнения. Это позволяет контролировать преднамеренные нефтепромысловые сбросы загрязняющих веществ и выявлять виновных. Газовую хроматографию применяют для анализа содержания нефти и нефтепродуктов в сочетании с другими методами. [c.141]

    Разделенные вещества элюируются из хроматографической колонки потоком газа-носителя, регистрируются детектором и фиксируются на хроматограмме в виде пиков. Полученная хроматограмма служит основой для качественного и количественного анализа смеси веществ. Метод газовой хроматографии применяется для анализа летучих веществ либо веществ, которые могут быть переведены в летучие с помощью специальных приемов и устройств в парообразное состояние. [c.106]

    Хроматон М-супер применяется для разделения сложных веществ методом газовой хроматографии, прежде всего при высоких температурах (напр, пестицидов). [c.276]

    Наконец, можно использовать газо-хроматографический метод и метод масс-спектрометрии совместно, применяя газовую хроматографию для предварительного разделения реакционной смеси до ее введения в масс-спектрометр. Количество вещества, отбираемое с хроматографической колонки, вполне достаточно для получения масс-спектра. [c.364]

    Каталитический профиль веществ и их активность изучались с помощью вакуумных, статических, обычных и импульсных динамических методов. Широко применялась газовая хроматография для быстрого анализа продуктов реакции, для измерения удельных поверхностей и для осуществления процессов в хроматографическом режиме, при котором в реакторе происходит непрерывное пространственное разделение компонентов реакционной смеси. Принцип хроматографического режима [13, 14] и его отличие от обычной статики и динамики показаны на рис. 1. [c.31]

    В качестве адсорбента — пористого твердого вещества — в газовой хроматографии обычно используют окись алюминия, силика-гели синтетические цеолиты и активированные угли в последнее время широко применяют пористые полимеры. [c.34]

    До того как стали применять газовую хроматографию, спектральные данные использовали в основном в анализах органических соединений для подтверждения результатов, полученных химическими методами. В настоящее время довольно широко распространен такой путь анализа, когда сначала проводят реакции с малыми (миллиграммовыми) количествами вещества, затем разделяют продукты реакций с помощью газовой хроматографии и окончательно характеризуют их с помощью спектральных методов. При этом значительная экономия времени и материалов позволяет хи-мику-органику осуществлять такие эксперименты, которые раньше были невозможны. Однако отказ от сложных, а иногда и неточных классических методов идентификации возлагает трудности структурных определений на спектральные методы. [c.250]


    К числу химических превращений, которые могут быть изучены с помощью ДТА, относятся процессы полимеризации и химические реакции в полимерах. К химическим реакциям относятся как процессы взаимодействия полимера с полимером и полимера с химическими соединениями, так и различные превращения в макромолекулярных веществах, вызванные воздействием внешней энергии в виде, например, излучения или тепла. Химические реакции могут включать процессы окисления, вулканизации, сшивания, отверждения и т. д. Используя метод ДТА, можно изучать воздействие излучений на полимеры, особенно если эти процессы сопровождаются изменением кристалличности. Сочетание метода ДТА с термогравиметрическим анализом дает возможность весьма успешно проводить изучение процессов термической деструкции. В последнее время для этой цели совместно с ДТА применяют газовую хроматографию. [c.325]

    Для анализа растворов летучих веществ можно с успехом применять газовую хроматографию (см. гл. гл. 23 и 28) или жидкостную хроматографию (см. гл. 29), причем жидкостная хроматография может быть использована и для анализа нелетучих растворов. [c.395]

    Большое внимание уделяют приготовлению эталонной смеси. Нельзя без проверки применять выпускаемые промышленностью реактивы квалификации чистый для анализа или чистый . Часто для контроля чистоты недостаточно определения одного только показателя преломления. Точный анализ возможен с помощью газовой хроматографии и инфракрасной спектроскопии [195]. Дополнительная очистка эталонного вещества не требуется в том случае, если экспериментально определенные физико-химические константы совпадают с теоретическими значениями и температура кипения вещества, измеренная термометром с ценой деления 1Л0 °С, имеет отклонение, не превышающее 0,1 °С с учетом влияния колебаний атмосферного давления. Большинство веществ нуждается в химической очистке от сопутствующих примесей [210—212] и в последующей четкой ректификации при высоком флегмовом числе. При использовании недостаточно очищенных веществ возможно смещение калибровочной кривой По — содержание % (масс.), а также концентрирование сопутствующих примесей в головке колонны или кубе при испытаниях. Это может привести к искажению результатов измерения разделяющей способности колонн. [c.156]

    В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную хроматографию, В газовой хроматографии подвижной фазой является газ. Газовая хроматография служит для разделения летучих веществ, к которым обычно относятся вещества с молекулярной массой приблизительно до 300, и термически стойких соединений. В жидкостной хроматографии подвижной фазой является жидкость. Она применяется для разделения нелетучих веществ с молекулярной массой от - 300 до 1000—2000, неорганических иоиов и термически нестойких соединений. Таким образом, газовая и жидкостная хроматография дополняют друг друга. [c.176]

    Хроматография как метод анализа, разделения многокомпонентных смесей и изучения физико-химических свойств веществ получила всеобщее признание и самое широкое распространение. Зтот метод с успехом применяют не только в химии и биологии, но и во многих других областях науки и техники. Газовые хроматографы работали на спускаемых аппаратах в атмосфере Венеры. [c.3]

    В газовой хроматографии, как правило, количественный анализ проводится не путем отбора отдельных порций анализируемого вещества на выходе из колонки, а по полученным на ленте самописца хроматограммам. Метод расчета количественного состава смеси зависит от типа применяемого детектора дифференциального или интегрального. В хроматографическом анализе почти всегда применяются дифференциальные детекторы, поэтому здесь рассматриваются только методы расчета по дифференциальным хроматограммам. [c.50]

    Газовая хроматография — сравнительно молодой метод разделения и анализа смесей веществ, а также исследования их свойств. Несмотря на это она получила не только всеобщее признание, но и самое широкое распространение. Газовую хроматографию как аналитический метод применяют не только в химии, но и в физике, биологии, геологии, медицине и других областях науки. Число публикаций в области газовой хроматографии за последние годы возросло в десятки раз. [c.3]

    Из различных методов молекулярной адсорбционной хроматографии необходимо отметить выделившуюся в самостоятельное направление газовую хроматографию хроматографию газов) . Смесь газов, проходящая через столбик адсорбента, разделяется так же, как и смесь веществ, находящихся в растворе. После поглощения промывают колонку каким-либо химически не активным газом ход вымывания отдельных компонентов совершенно аналогичен приведенному выше (см. рис. 10). Для определения концентрации вымываемого газового компонента применяют различные физические методы, например измерение теплопроводности газов. [c.70]


    Вначале, когда газовой хроматографией пользовались лишь для анализа газовых смесей (в основном углеводородов), в качестве дозатора применялась обычная газовая бюретка. На рис. 8 изображена самодельная газо-хроматографическая установка для анализа несложных газовых смесей углеводородов. В современных хроматографах промышленного изготовления применяются дозаторы особой конструкции, которые позволяют дозировать микропробы твердых веществ. [c.24]

    В настоящее время препаративные газовые хроматографы выпускает наряду с аналитическими хроматографами приборостроительная промышленность. Как и в аналитических приборах, в них применяются проявительный способ разделения. Но они существенно отличаются от аналитических приборов по характеру, конструкции и назначению отдельных узлов. Прежде всего, как уже сказано, отличие состоит в применении хроматографических колонок намного большего диаметра. Далее, детектор играет вспомогательную роль, так как перед ним ставится ограниченная задача контроля за качеством разделения. Он автоматически переключает поток газа нз колонки в Конденсационную ловушку во время отбора продуктов разделения. Переключается поток во время конденсации каждого пика по программе, задаваемой экспериментатором, с помощью электромеханических или электронных устройств. Конденсация происходит в специальных ловушках, погруженных в сосуд Дьюара с жидким азотом или охладительной смеси из твердой двуокиси углерода и ацетона. Если разделяют высококипящие вещества, ловушки можно охлаждать проточной водой. При разделении газообразных веществ, например углеводородных газов, целесообразно ловушки наполнять адсорбентом. Адсорбированные целевые продукты разделения потом десорбируют при повышенной температуре, газы конденсируют в стальные баллончики, погру- [c.213]

    Основным в газовой хроматографии остается классический элюентный способ с его многочисленными методическими и аппаратурными видоизменениями. Это наиболее старый и в то же время наиболее распространенный и универсальный способ. Этим способом разделяют не только газовые смеси, но и смеси любых жидких и даже твердых веществ, обладающих хотя бы незначительной упругостью пара при температуре разделительной колонки. При этом упругость пара должна быть достаточна, чтобы применяемый детектор мог четко зафиксировать разделяемые компоненты на выходе из колонки. Таким образом, термин газовая хроматография отнюдь не означает, что этот вид хроматографии применим лишь для анализа газовых смесей. Этот термин означает прежде всего то, что разделяемые компоненты смеси находятся в парообразном или газообразном состоянии, а подвижной фазой является газ-носитель, играющий роль проявителя. Температура кипения веществ, которые можно разделять методом газовой хроматографии, может колебаться в пределах от —200 до 400 С. [c.23]

    Тефлон. Тефлон (политетрафторэтилен) (—Ср2—СРг—)п — кристаллический полимер с молекулярной массой 500 000—2 000 000. Он весьма термостоек, поэтому применяется в газовой хроматографии для разделения высококипящих веществ. При 350°С тефлон разлагается с образованием сильно токсичных соединений. Одно из них — перфторизобутилен — более ядовито, чем фосген. Получают тефлон полимеризацией тетрафторэтилена в присутствии пероксид-ных катализаторов. У пористого тефлона 5уд до 10 м /г. [c.167]

    Для идентификации высокомолекулярных соединений применяют реакции термического разложения соединений (300—1000°С) без доступа воздуха в инертной среде — пиролиз. Пиролитическая газовая хроматография широко применяется для идентификации нелетучих и неустойчивых соединений. Идентификацию проводят путем сравнения хроматограмм пиролиза исследуемых соединений (пирограмм) с соответствующими пирограммами эталонных веществ. [c.221]

    Газовую хроматографию применяют для разделения летучих термически устойчивых веществ с молекулярной массой до 300. Жидкостная хроматография пригодна для разделения органических и неорганических веществ с молекулярной массой до 2000, в том числе термически неустойчивых. [c.352]

    Анализируемая проба проходит через разделительную колонку в виде газа или паров. Поэтому температура, как рабочий параметр процесса, играет в газовой хроматографии большую роль, чем в других хроматографических методах. Но, с другой стороны, этот факт ограничивает область применения газовой хроматографии метод газовой хроматографии можно применять для анализа только тех веществ, испарение которых можно провести воспроизводимо. [c.361]

    Удерживаемый объем. В газовой хроматографии получают внешние хроматограммы, строя зависимость величины сигнала детектора (разд. 7.3.1.1) от времени. Газ проходит через установку с постоянной объемной скоростью, поэтому при построении зависимости по времени можно легко рассчитать объем газа-носителя. Проекция максимума пика на ось времени или соответственно объема дает величину так называемого времени удерживания t t или соответственно удерживаемого объема Удг Для соответствующего вещества (рис. 7.12). Для характеристики мертвого времени или мертвого объема разделительной колонки применяют вещества, нерастворимые в стационарной фазе или не адсорбируемые ею, например воздух. [c.362]

    Для одновременного определения серы и галогенов в органических веществах применяется газовая хроматография (разделение) в сочетании с кондуктометрией (количестванное определение). Навеска органического вещества подвергается окислительному разложению газообразным кислородом в замкнутой системе. По окончании окисления (3—5 мин.) продукты разложения направляются потоком газа-носителя на хроматографическую колонку, где галогеноводороды задерживаются, а двуокись серы поступает в кондуктометрическую ячейку для количественной оценки. После определения серы (4 мин.) включается нагреватель на хроматографической колонке и ННа1 выдуваются во вторую кондуктометрическую ячейку. Точность определения серы и галогенов +0,2% продолжительность 15 мин. Величина навески 1 жз и более. Установлено, что для проведения полного окисления серы и галогенсодержащих органических веществ при навесках 1—3 мг вполне достаточно количества кислорода, находящегося в закрытой кварцевой пробирке размером 200 X 10 мм. Разложение органического вещества проводится автоматически двигающейся печью при 900— 1000° С. Пробирка закрывается мембранным переключателем потока газа, изготовленным из органического стекла или тефлона. [c.37]

    Макл и другие [25] применили иной газохроматографический способ приближенного измерения теплоты испарения, в котором последняя обычно определяется по уравнению Клаузиуса — Клапейрона путем определения изменений упругости пара в зависимости от температуры. Трудности, присущие этой методике, заключаются в очистке пробы и необходимости применения для измерения давления прибора высокой чувствительности и надежности. Эти исследователи предложили применять газовую хроматографию в сочетании с показанной на рис. XVII-5 системой ввода пробы через байпас для измерения изменений упругости пара вещества с температурой. [c.393]

    Особенностью анализа примесей сернистых веществ в сточных водах является необходимость определения ультрамалых концентраций нестабильных и довольно летучих веществ на фоне большого числа сопутствующих при.месей. В последнее время для этих целей все шире применяется газовая хроматография. Для успешного проведения анализа важное значение имеет правильный выбор способа отбора пробы и ее подготовка для анализа. Между тем этим сторонам газохроматографического анализа микропримесей сернистых веществ в существующих методиках уделяется недостаточное внимание. [c.117]

    Аналогичный хромато-масс-спектрометрический метод использован при анализе сточных вод, загрязненных парафиновыми углеводородами С5— [317]. Примеси извлекали из воды потоком азота (20 мл/мин) в специальном приборе для динамического выделения нерастворимых в воде органических веществ. Время извлечения составляло 11 мин. К прибору присоединяли ловушку, заполненную хромосорбом 103 или тенаксом ОС (ноли-2,6-фениленом). Для десорбции псглощенных в ловушке веществ в хроматограф ее нагревали до 130° С и пропускали поток азота (20 мл/мин) в теченне 3 мин. Для анализа применяли газовый хроматограф с пламенно-ионизационным и микрокулонометрическим детекюрами. Колонки заполняли хромосорбом 101 или хромосорбом Р, содержащим 4% голи-силоксана 5Е-30. [c.146]

    Для разделения сложных смесей летучих веществ с широким интервалом температур кипения обычно применяют газовую хроматографию с программированием температуры в процессе анализа. Недостаток такого типа отечественных приборов побудил использовать более простую возможность изменения температур путем использовапня нагревателей хроматографа Цвет-1 при работе с пламенно-ионизационным детектором. Путем различного сочетания нагревателей (основных 750 вт и дополнительного 1200 от) можно получить нелинейную программу температуры в среднем 2- -9° мин (рис. 1). [c.53]

    Современная высокоэффективная жидкостная хроматография. ВЭЖХ (жидкостная хроматография высокого давления, скоростная жидкостная хроматография) начала развиваться в начале 70-х годов. Разработка нового метода обусловливалась, во-первых, необходимостью анализа высококипящих (>400 °С) или неустойчивых соединений, которые не разделяются методом газовой хроматографии, во-вторых, необходимостью увеличить скорость разделения и повысить эффективность метода колоночной жидкостной хроматографии. Для этого применили колонки с малым внутренним диаметром (2—6 мм) для ускорения массообмена уменьшили диаметр частпц сорбента (5— 50 мкм), что, в свою очередь, привело к необходимости увеличить давление на входе колонки до 0,5—40 МПа. Выпускаемые промышленностью жидкостные хроматографы снабжены высокочувствительными детекторами, позволяюш,ими определять до 10 —10" ° г вещества. Достаточно высокая скорость анализа, низкий предел обнаружения, высокая эффективность колонки, возможность определять любые вещества (кроме газов) привели к быстрому развитию ВЭЖХ. [c.203]

    Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки. В жидкостной хроматографии применяют также специальные коллекторы для сбора фракций с последующим их анализом. Однако непрерывное измерение концентрации с автоматической ее записью обладает неоспоримыми преимуществами перед пофракционным анализом. Успех современной жидкостной хроматографии наряду с другими факторами обеспечен именно созданием чувствительных детекторов непрерывного действия. [c.88]

    Высокая эффективность хроматографии как метода разделения сложных смесей вызвала стремление использовать ее не только для анализа, но и для выделения чистых веществ из их смеси в препаративных целях. Впервые препаративная газовая хроматография была применена Джеймсом и Филлипсом, а также Эвансом и Татлоу. [c.204]

    Второй метод основан на реакции взаимодействия гидроксильных групп, имеющихся на поверхности применяемых носителей, с силанизирующими реагентами. Эта идея была впервые использована для дезактивации твердых носителей в газовой хроматографии. В ЖЖХ силанизацию производят для химического закрепления неподвижной фазы на твердом носителе. Такие системы получили название связанных фаз. Так, например, Стюарт и Перри приготовили октадецилцелит , с которого органические вещества не смывались ни одним из органических растворителей. Промышленностью выпускаются силанизированные носители, которые с успехом применяются в ЖЖХ. Например, дурапакс , в котором поверхность пористого стекла силанизирована и содержит радикалы оксидипропионитрила, полизтиленгликоля с молекулярной массой 400 или н-октана. Эти вещества и служат неподвижной фазой. [c.215]

    Термохимический детектор устроен аналогично катарометру, юднако изменение электрического сопротивления нити в нем происходит за счет тепла, выделяющегося при сгорании анализируемых веществ на нагретой до высокой температуры платиновой нити, -являющейся одновременно чувствительным элементом детектора и катализатором реакции горения. Поэтому в качестве материала яити применяется только платина. Термохимический детектор прост ш удобен в обращении, достаточно чувствителен для обычной газовой хроматографии, сравнительно недорог. Однако его применение ограничено анализом только горючих веществ и необходимостью применения воздуха или даже кислорода в качестве газа-носителя. Кроме того, его чувствительность изменяется со временем, а продолжительность работы нити невелика. [c.106]

    АКТИВИРОВАННЫЙ УГОЛЬ-уголь с чрезвычайно развитой микро- и макропористостью (размеры микропрр составляют от 10 — 20 до 1000 А). Существует два типа А. у. Первый тип применяют для сорбции газов и паров имеет большое количество микропор, обусловливающих сильную адсорбционную способность. Второй тип используют для сорбции растворенных веществ. Оба типа А. у. должны иметь большую легко доступную внутреннюю поверхность пор. А. у. изготовляют в две стадии. 1) Выжигают древесину, скорлупу орехов, косточки плодов, кости животных при температуре 170—400° С без доступа воздуха, чем достигают удаления воды из исходного органического вещества, метилового спирта, уксусной кислоты, смолообразных веществ и других, а также развития пористой поверхности. 2) Полученный уголь-сырец активируют, удаляя из пор продукты сухой перегонки и развивая поверхность угля. Это достигается действием газов-окислителей, перегретым водяным паром или диоксидом углерода при температуре 800—900° С или предварительным пропитыванием угля-сырца активирующими примесями (хлоридом цинка, сульфидом калия), дальнейшим прокаливанием и промыванием водой. До-стагочно тонкопористый А. у. можно получить термическим разложением некоторых полимеров, например, поли-винилиденхлорида (сарановые угли). А. у. применяют для разделения газовой смеси, в противогазах, как носитель катализаторов, в газовой хроматографии, для очистки растворов, сахарных соков, воды, в медицине для поглощения газов и различных вредных веществ при кишечно-желудочных заболеваниях. [c.13]

    Наиболее широко применяется классификация типов хроматографии по характеру фаз, между которыми происходит процесс разделения. По этому признаку различают газовую хроматографию (газожидкостную и газотвердую) и жидкостную хроматографию (жидкость-жидкостную, жидкость-твердую, жидкость-гелевую). При этом первое слово характеризует подвижную фазу, второе — неподвижную. Жидкая неподвижная фаза может быть образована путем закрепления жидкости на твердом веществе. [c.352]

    Для хроматографии молекул на основании их химического и геометрического строения и возможных изменений конформации весьма важно создание на поверхности адсорбентов рецепторных мест фиксации, способных проявлять различные виды межмолекулярных взаимодействий, (табл. 1.1). В лекции 1 показано, что для разделения множества структурных изомеров достаточно применить неспецифические атомарные адсорбенты с плоской поверхностью. В лекции 2 приведены примеры хроматографии близких по геометрии полярных молещул при дополнительном воздействии на такие молекулы электростатического поля ионных адсорбентов. Б лекциях 3 и 4 рассмотрено использование образования между молекулами и поверхностными соединениями водородных связей. В лекции 4 показано также, что адсорбенту можно придать электроноакцепторные свойства путем отложения на его поверхности адсорбционных слоев модифицирующих веществ, обладающих этими свойствами. Это улучшает разделение электронодонорных молекул. Однако адсорбционные модифицир ующие слои часто оказываются недостаточно термически стойкими для использования в газовой хроматографии при высоких температурах или нестойкими к воздействию растворителей (элюентов) в жидкостной хроматографии. Поэтому весьма важно использовать для связи модифицирующего вещества с поверхностью адсорбента также и более прочные химические связи. При этом надо стремиться достичь геометрического и химического соответствия поверхностных соединений и тех или [c.89]

    Рассмотренное влияние на разрешфие хроматографической колонны разных факторов показывает, что газовая хроматография может успешно применяться для определения констант Генри как одного вещества, так и сразу нескольких компонентов смеси, если при достаточно высокой селективности а и емкости к обеспечивается необходимая эффективность колонны (большие М, малые Н). Этому способствует приближение условий работы колонны к равновесным (достаточно высокая температура колонны, однородность адсорбента и его упаковки, не слишком большие энергии адсорбции). Таким образом, для реализации селективности колонны, определяемой природой данного адсорбента, необходимо позаботиться о возможно большей ее эффективности. Определение констант Генри и изотерм адсорбции хроматографическим методом требует обеспечения равенства и постоянства температуры подводимого к колонне газа-носителя и температуры самой колонны, поддержания постоянства и измерения Т, I, w, р и Ро (см. раздел 7.8) с максимальной точностью, а также соблюдение необходимых предосторожностей при вводе малых доз адсорбатов. [c.140]

    Вязкость обычных жидкостей много больше вязкости газов, поэтому в жидкостной хроматографии процессы внешней (между зернами адсорбента) и внутренней (в их порах) диффузии играют особенно важную роль, приводя к сильному размыванию пиков. Это влечет за собой, как известно, уменьшение числа теоретических тарелок N и соответствующий рост Я — высоты, эквивалентной теоретической тарелке, т. е. к падению эффективности хроматографической колонны. В результате часто оказывается невозможным реализовать селективность, присущую данной системе адсорбент — дозируемые вещества — элюент, которая определяется прйродой этой системы. Эти проблемы имеют место и в газовой хроматографии, однако, как было показано ранее, в газовой хроматографии, как правило, можно пренебречь конкурирующей адсорбцией элюента, снижающей адсорбцию дозируемых веществ. Поэтому в газовой хроматографии можно использовать непористые или широкопористые адсорбенты со сравнительно малой удельной поверхностью. Поверхность таких адсорбентов обычно более однородна и доступна. В жидкостной же хроматографии не очень больших молекул приходится применять адсорбенты с гораздо более высокой удельной поверхностью, а следовательно, более [c.283]

    Этот метод используется при разделении больших количеств исходной смеси. Иа выходе колонки помещают коллектор фракций, с помощью которого можно получать очень чистые (99,999%) индивидуальные вещества. Приемники коллектора связаны с программирующим устройством так, что отбор фракций происходит автоматически при регистрации пика того или иного компонента на ленте самописца. Методы препаративной газовой хроматографии широко применяются в промышленности, чаще всего для разделения двухкомпонентных систем, например для рекуперации паров летучих растворителей, для осушки воздуха, очистки мономеров и при других процессах. [c.281]


Смотреть страницы где упоминается термин Вещества, применяемые г. газовой хроматографии: [c.189]    [c.232]    [c.456]    [c.113]    [c.9]   
Смотреть главы в:

Техника газовой хроматографии -> Вещества, применяемые г. газовой хроматографии




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2024 chem21.info Реклама на сайте