Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Церий—элемент

    По характеру заполнения 4/-орбиталей элементы семейства лантаноидов разделяются на подсемейства. Первые семь элементов (Се—Ос]), у которых в соответствии с правилом Хунда 4/-орбитали заполняются по одному электрону, объединяются в подсемейство церия семь остальных элементов (ТЬ—Ей), у которых происходит заполнение 4/-орбиталей по второму электрону, объединяются в подсемейство тербия  [c.639]


    Поскольку у лантаноидов валентными в основном являются 5 1б5 -электроны, их устойчивая степень окисления равна +3. Однако элементы, примыкающие к лантану (4/ ), гадолинию (4/ ) и лютецию (4/1 ), имеют переменные степени окисления. Так, для церия (4/ 6 ) [c.549]

    К редкоземельным металлам относятся элементы скандий, иттрий и лантан, а также элементы от церия до лютеция. По-след-ние называют лантаноидами . Главная степень окисления всех редкоземельных металлов -+-3. Церий, празеодим и тербий относительно легко приобретают степень окисления +4, а евро-лий, иттербий и самарий +2. [c.607]

    В первом десятилетии XIX в. к этому списку добавилось не менее четырнадцати новых элементов Так, только Дэви выделил с помощью электролиза ни мало, ни много шесть элементов (см. гл. 4), Гей-Люссак и Тенар выделили бор, Уолластон — палладий и родий, Берцелиус открыл церий. [c.92]

    ЭЛЕМЕНТЫ СЕМЕЙСТВА ЦЕРИЯ (ЛАНТАНОИДЫ) [c.548]

    Некоторое отличие в поведении трехвалептного церия определяется, по мнению авторов спецификой церия — элемента с менее выраженными основными свойствами, для кото- [c.199]

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]

    Было установлено, что дихлориды диаминов жирного ряда образуют с хлоридами лантана и церия двойные продукты присоединения только тогда, когда имеют большие молекулярные массы. Представлялось целесообразным проследить закономерность комплексообразующей способности других хлоридов редкоземельных элементов по тем же дихлоридам диаминов. В данной статье приводятся результаты экспериментальных исследований с хлоридом гадолиния. [c.95]


    Для экспериментального изучения процессов смешения и диспергирования при переработке полимерных материалов и, в частности, для снятия расходно-напорных характеристик одношнекового экструдера с диспергирующими элементами была создана модельная экспериментальная установка, представляющая собой одношнековый экстру-цер основным элементом которого являлся прозрачный корпус, изготовленный из органического стекла, с отверстием диаметром 40 ми [c.113]

    Рассмотрим это конкретнее. Предшественник лантана — барий имеет форму Ва (5 р 8-), а следующий за лантаном церий Се (4 Г- 5 р 8 ), то по логике непрерывности тенденции лантан должен занять промежуточное положение между ними, т. е. Ьа (4 Г 5 р 8 ), а актиний соответственно Ас (5 Г 6 р "). Их признаки (4 Г и 5 Г ) дают основание считать эти элементы первыми членами названных семейств. Отклонения не должны затенять главных, сквозных закономерностей, хотя мы постоянно помним о них и учитываем. [c.176]

    Так, согласно А. Ф. Капустинскому, в земных условиях атомы имеют обычные электронные структуры на глубине до 60—120 кле, что соответствует давлению 2-10 — 6-10 атм. На глубине примерно 3 тыс. км (что соответствует давлению в миллионы атмосфер) атомы приобретают уже иные структуры. Электронные уровни атомов последовательно заполняются до предельной емкости. Например, электронная структура элемента 6-го периода церия должна быть Периодическая система элементов, существующих в условиях столь высоких давлений, должна состоять лишь иэ пяти периодов (содержащих соответственно 2, 8, 18, 32 и 50 элементов). Необычная электронная структура атомов обусловливает особое состояние вещества, специфику его физических и химических свойств. По выражению А. Ф. Капустинского, это зона вырожденного химизма . [c.157]

    К третьей группе относятся типические элементы (бор, алюминий), элементы подгруппы галлия (галлий, индий, таллнй) и подгруппы скандия (скандий, иттрий, лантан, актиний) к этой группе часто относят элементы семейств церия (лантаноиды) и тория (актиноиды). [c.508]

    S-, р-, d- или /-элементами являются натрий, церий и железо Написать электронные формулы и объяснить, почему в свободном состоянии они не могут быть окислителями  [c.95]

    В семейство церия объединяются 4/-элементы церий Се, празеодим Рг, неодим N(1, прометий Рт, самарий 8т, европий Ей, гадолиний Ос1, тербий ТЬ, диспрозий Оу, гольмий Но, эрбий Ег, тулий Тт, иттербий УЬ и лютеций Ей. [c.548]

    Ионы редкоземельных элементов и тория обычно осаждаются в виде труднорастворимых оксалатов. Растворимость в воде щавелевокислого тория, а также церия, лантана и других редкоземельных элементов на- [c.46]

    В виде простых веществ элементы семейства церия представляют собой тугоплавкие серебристо-белые металлы (Рг и N(1 слегка желтоватого цвета). Некоторые константы их (и для сравнения лантана) приведены ниже  [c.550]

    Глава 5. Элементы семейства церия (лантаноиды) [c.553]

    Поскольку у лантаноидов валентными в основно.м являются 5d 6s -элeктpoны, их устойчивая степень окисления равна +3. Однако элементы, примыкающие к лантану (4/ ), гадолинию (4/ ) и лютецию (4/ ) имеют переменные степени окисления. Так, для церия (4/ 65 ) наряду со степенью окисления +3 характерна степень окисления +4. Это связано с переходом двух 4/-электронов в Ьй-состояние. По той же причине степень окисления +4 может проявлять и празеодим (4/ ) (хотя она и значительно менее характерна, чем для Се). Европий, имеющий семь 4/-электронов (4/ 6я ), может, напротив, проявлять степень окисления +2. [c.641]

    В химическом отношении актиноиды (IV) сходны друг с другом и с церием (IV), а также с -элементами IV группы (подгруппа титана). Основное отличие актиноидов друг от друга связано с актиноидным сжатием (постепенным уменьшением радиусов ионов от 0,99 А у ТЪ + до 0,89 А у Ат +). [c.560]

    Упомянутые выше нарушения нормального порядка заполнения энергетических состояний в атомах лантана (появление Ъс1-, а не 4/-электрона) и керня (появление сразу двух 4/-электр(люи) и аналогичные особенности в построении электронных структур атомов элементов седьмого периода объясняются следующим. При увеличении заряда ядра электростатическое притяжение к ядру электрона, находящегося на данном энергетическом подуровне, становится более сильным, и энергия электрона уменьшается. При этом энергия электронов, находяншхся на разных подуровнях, иэмеипстся неодинаково, поскольку по отношению к этим электронам заряд ядра экранируется в разной степени. В частности, энергия 4/-электронов уменьшается с ростом заряда ядра более резко, чем энергия 5 -электроиов. (см. рис. 24). Поэтому оказывается, что у лантана (2 = 57) энергия 5с электронов ниже, а у церия (2 = 58) выше, чем энергия 4/-электронов. В соответствии с этим, элек- [c.98]

    Повторить опыт, взяв вместо натрия кусочек церия нли миш-металла (смесь редкоземельных элементов). Если реакция будет идти медленно, добавить несколько капель 4 н, раствора серной кислоты. Помутнение раствора без кислоты происходит вследствие малой растворимости оксида и гидроксида церия в воде, которые растворяются в серной кислоте, [c.94]


    Ha протяжении последних 5—7 лет патентная литература отразила стремление улучшить катализаторы риформинга за счет перехода от биметаллических к полиметаллическим каталитическим системам. Большей частью такие системы содержат, наряду с платиной, еще два элемента, из которых один принадлежит к первой группе, а другой —ко второй. Так, если алюмоплатнновый катализатор промотируют рением, то в катализатор вводят еще один из следующих металлов медь, серебро, кадмий, цинк, индий, редкоземельные элементы — лантан, церий, неодим и др. [1551. [c.75]

    В чем отличие поведения соединений церия от поведения других редкоземельных элементов  [c.252]

    В ряду Се—Ьи по мере увеличения заряда ядер их атомов новые электроны поступают не на 5 -подуровень, а на подуровень 4/ (табл. 31). В атоме церия 5й-элек-трон, имевшийся у лантана, переходит на /-подуровень. По характеру заполнения электронами подуровня 4/ семейство лантаноидов разделяется на подсемейства церия (элементы от Се до Ос1), у которого на 4/-орбиталях [c.441]

    В дальнейшем приняты обозначения Цер.— элементы церие-1ЮЙ группы, Иттр.— элементы иттриевой группы и Р. 3. — все редкоземельные элементы, а также иттрий. [c.29]

    На примере так называемых редкоземельных элементов можно продемонстрировать трудность чисто химического доказательства, что вещество является элементом. В 1839 г. щведский химик Карл Мозандер экстрагировал из нитрата церия новый элемент, названный им лантаном (от греческого лантанейн , что означает спрятанный ). Спустя два года он показал, что препарат, содержащий лантан, включает в себя еще один элемент, который он назвал дидимием (от греческого дидимос , означающего близнец ), В 1879 т. Франсуа Лекок де Буабодран выделил из препарата диди-мия еще одно вещество, самарий, и все эти вещества считались химическими элементами. Дидимий прекратил свое существование в химии в 1885 г., когда австриец Карл Вельсбах разделил его на два новых элемента-неодим ( новый близнец ) и празеодим ( зеленый близнец ). Лишь наличие у нас периодической системы элементов и понимание принципов, на которых она основана, позволяют быть уверенным, что между водородом iH и элементом с номером 105 нельзя уже открыть никаких новых элементов. [c.271]

    Следующий за церием элемент, празеодим, имеет в нормально ионизированном состоянии 2 электрона на 4/-оболочке. Однако он в состоянии проявлять валентность - -4, правда уже не в растворе, а в твердой фазе, благодаря чему он не мешает соответствующим методам определения церия. При прокаливании при строго определенных температуре и времени он образует высший окисел примерного состава Рг, О,, , который при обработке раствором MnSOi полностью отдает активный кис юрод, окисляя Чп-" доМпО , титруемого затем щавелевой кислотой [44]. Высший окисел можно титровать также иодометрически [45]. Естественно, что обе методики применимы лишь в отсутствие церия. Влияние тербия, который дает высший окисел примерного состава ТЬ, 67, не исследовано. Способность высшего окисла восстанавливаться до Рг " в разбавленной HNO t с выделением свободного кислорода послужила основой для разработки газового объемного метода определения Рг в смеси с Nd [46]. [c.130]

    В энергиях 4[- и 5 -состояний очень мала. Благодаря этому одии из 4/-электронов (а в некоторых случаях, например, у церия, два 4/-электрона) легко возбуждается, переходя иа 5 -подуровень, и сгановится, таким образом, валентным электроном. Поэтому в большинстве своих соединений лантаноиды имеют степень окисленности +3, а не +2. Это обстоятельство объясняет близость свойств лантаноидов к свойствам элементов подгруппы скандия. [c.642]

    Вслед за этим у элементов № 55 и № 56 заполняется 6.5-подуро-вень и у элемента № 57 (лантан) очередной электрон становится на 5 -подуровень. После этого, начиная с элемента № 58 (церий), происходит заполнение 4/-подуровня, которое завершается у элемента № 71 (лютеций) и, начиная с элемента № 72 (гафний), продолжается заполнение 5й-подуровня, а затем (с элемента № 81) — бр-подуровня, которое заканчивается у элемента № 86 — радона. В дальнейшем аналогичная картина повторяется у элементов № 87 и № 88 заполняется 75-подуровень, у элемента № 89 электрон становится на 6б/-подуровень, с элемента № 90 начинается заполнение 5/-подуровня, которое завершается у элемента № 103, а с элемента № 104 продолжается заполнение 6 -подуровня. [c.31]

    Основные элементы, которыми легируют деформируемые алюминиевые сплавы для обеспечения их упрочнения при термической обработке — медь, кремний, магний, цинк. В некоторые сплавы добавляют литий, церий, кадмий, цирконий, хром и другие элементы. К наиболее важным и распространенным сплавам, упрочняемым закалкой с последующим старением, относятся сплавы систем А1—Си—Mg типа дюралюминий, А1—Мд—51, ави-аль А1—2п—Mg—Си (высокопрочные сплавы Ов бОО— 700 МН/м ), А1—М —2п (самозакаливающиеся свари--ваемые сплавы, сгв=400—450 MH/м ), не требующие термической обработки после сварки, А1—Си—Сс1— (жаропрочные сплавы, Ов = 360—400 МН/м ) после 1000 ч выдержки при температуре 180°С. К высокопрочным сплавам относятся сплавы В93, В95, В96 системы А1—2п—Mg—Си, сплав ВАД23 системы А1—Си—Мп— С(1 и, частично, в зависимости от применяемой термической обработки и вида полуфабриката, сплавы. Д16, Д19, системы А1—Си—Mg, сплав АК8 системы А1—Си—Mg—51. Наибольшей прочностью при комнатной температуре обладают сплавы В93, В95, В96 и ВАД23. Сплавы Д16 и Д19 обладают меньщей прочностью при комнатной температуре, чем сплавы В93, В96, В95. Однако их преимущество заключается в большей жаропрочности и меньщей чувствительности к коррозии. Сплав ВАД23 сохраняет относительно высокие прочностные характеристики после длительных нагревов до 160— 180°С. Исходя из характеристик алюминиевых сплавов следует применять сплавы В93, В95, В96 для конструкций, работающих до температуры 100°С, при этом в конструкции должны отсутствовать концентраторы напряжений, расположенные в плоскости, перпендикулярной к действию силы. Для нагружения конструкций, работаю- [c.49]

    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]

    В промышленной практике для ионного обмена используется смесь редкоземельных элементов. Установлено [1, 2], что стабильная активность прямо пропорциональна содержанию лантана или неодима и обратно пропорциональна содержанию церия в цеолитном компоненте. На рис. 3.20 показана зависимость стабильной активности цеолитсодержащих катализаторов в крекинге керосино-газойлевой фракции при 450 °С от изменения отношения Ме Н в цеолите типа V (20% масс, на катализатор) для лантаноидов цериевой группы. Наблюдается закономерное изменение активности с ростом отнощения Ме Н в цеолите для всех лантаноидов за исключением образца с катионами церия, активность которого значительно ниже. Как следует из приведенных данных, для катализаторов с редкоземельными элементами для обеспечения высокой стабильной активности отношение Ме Н в цеолите должно составлять не менее 3 1. Степень замещения катионов натрия на катионы редкоземельных элементов, по данным [I], должна находиться в пределах 40—85%. [c.44]

    Известно, например, более 250 минералов, содержащих лантаноиды. Лантаноиды с четными порядковыми номерами более распространены, чем с нечетными (см. рис. 19). При этом элементы с нечетными номерами имеют лишь по одному природному изотопу (за исключением европия и лютенция, имеющих по два изотопа). Лантаноиды с четными номерами имеют по семь изотопов (кром эрбия и церия, имеющих соответственно шесть и четыре природных изотопа). Для всех РЗЭ получены искусственные радиоактивные изотопы, образующиеся, в частности, в ядерных реакторах. [c.550]

    Одним из наиболее выдающихся химиков-аналитиков первой половины XIX в. был шведский ученый И. Я. Берцелиус. Он проанализировал большинство известных в то время химических соединений и определил соединительные веса всех известных тогда химических элементов. Следует отметить высокую точность этих определений, многие из которых, вьшол-иенные в 1818 г., весьма близки к современным. Так, для углерода Берцелиус нашел атомный вес 12,12, для кислорода 16,0 (приатомном весе водорода, равном 1), для серы — 32,3. Некоторые атомные веса были опре-дтлены менее точно и, кроме того, были кратными величинами истинных атомных весов так, для железа Берцелиус принял атомный вес 109,1, так как окислам железа в то время приписывали состав РеОг и РеОз. Берцелиус ввел современные знаки химических элементов, открыл ряд новых элементов (церий, селен, торий). [c.11]

    Окрашенные соединения с перекисью водорода образуют, помимо титана, также ванадий, церий и молибден. Эти элементы необходимо отделить перед определением титана. Титан легко отделить от ванадия и молибдена путем осаждения гидроокиси титана едким натром. При этом пятивалентный ванадий и шестивалентный молибден остаются в растворе в виде NaVOj и Na MoO . Гидроокись титана растворяют затем в серной кислоте. Церий отделяют в виде малорастворимого оксалата. [c.258]


Смотреть страницы где упоминается термин Церий—элемент: [c.346]    [c.97]    [c.640]    [c.487]    [c.343]    [c.175]    [c.244]    [c.549]   
Рабочая книга по технической химии часть 2 (0) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Отделение скандия от церия и редкоземельных элементов

Пятая публикация Рукописи статьи Д. И. Менделеева О месте церия в системе элементов (ноябрь

Редкоземельные элементы также Торий, Церий

Редкоземельные элементы церия

Церий

Церий выделение из смеси редкоземельных элементов

Церий и другие редкоземельные элементы

Церий определение в смеси окислов редкоземельных элементов

Церий отделение от редкоземельных элементов

Церий также Редкоземельные элементы обмен Се с e

Церит

Элементы семейства церия (лантаноиды)

месте церия в системе элементов



© 2025 chem21.info Реклама на сайте