Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы, атомность истинные

    Формулы химических соедине пгй подразделяют на простейшие, или эмпирические, и истинные, или молекулярные. Для вывода простейшей формулы достаточно определить экспериментально качественный и количественный состав вещества и знать атомные массы входящих в него элементов. Для вывода истинной формулы кроме состава вещества необходимо знать и его молекулярную массу. [c.23]


    Абсолютная атомная масса — истинная масса элемента, выраженная в граммах. Абсолютная масса атома углерода составляет 1,993- г, кислорода — 2,667-10 г, водорода — 1,674-10-2 г. [c.4]

    Химическая формула выражает качественный и количественный состав вещества и показывает соотношение между атомами этого вещества. Для определения формулы необходимо проанализировать соединение, установить, какие элементы и в каком количестве входят в его состав. Зная атомные массы этих элементов, можно найти соотношение атомов в молекуле и определить формулу. Такую формулу называют простейшей, или эмпирической, а соответствующую ей молекулярную массу — формульной. Она не отражает истинного состава молекулы. [c.51]

    Из всего изложенного можно заключить, что к началу XIX в. в науке о веществе сформировались понятия об атоме и химическом элементе, близкие к истинным. Конечно, с учетом метаморфозы, произошедшей с переносом термина "атом" на другую частицу. Химия накопила значительные знания о свойствах химических элементов, число открытых элементов достигло трех десятков, ученые научились определять атомные веса. Так постепенно созревали условия для приведения всех химических элементов в систему. Введенные Берцелиусом в 1813 г. символы для обозначения химических элементов (которые используются до сих пор) облегчали задачу систематизации. [c.27]

    Для вывода эмпирических формул, выражающих простейший состав молекулы, необходимо знать из каких элементов образовано вещество, их массовые доли и относительные атомные массы. Для вывода истинных или молекулярных формул, соответствующих действительному числу атомов каждого элемента в молекуле, необходимо также знать и молярную массу вещества. [c.31]

    Для каких элементов атомные веса, найденные по правилу Дюлонга и Пти, значительно отличаются от истинных значений  [c.44]

    Атом азота при тех же условиях будет играть роль донора, создающего электронную проводимость. Переносить отдельные атомы и строить из них различные структуры на атомном уровне при помощи электронного луча умеют уже сегодня. Рассчитав на ЭВМ требуемую электронную цепь, можно собирать целые схемы нанометровых размеров. Причем это будет истинная наноэлектроника с полупроводниковыми элементами атомных размеров, управляющая движением отдельных электронов. [c.101]

    Сегодня очевидно — интегративную основу Менделеев не использовал до конца и потому не увидел истинную структуру ряда химических элементов. Хотя в таблице и просматривается рост атомных весов в вертикальных столбцах сверху вниз, но их начала не совпадают с началами периодов. Они начинаются не с одновалентных, а с двухвалентных элементов. Препарирование ряда произведено им не по естественным суставам , а по живому телу , а значит, его столбцы не адекватны периодам. На ряде (табл. 4) эти суставы видны абсолютно четко. Здесь и валентные группы трудно растерять — хорошо видно, что их семь. От до Г и от N3 до С1 они видны однозначно. Эти два периода явились бы надежной опорой для развития идеи повторяемости далее по ряду химических элементов. Даже из этого неполного ряда видно, что с дальнейшим его развитием что-то повторяется, а что-то появляется вновь. [c.53]


    Молекулярный вес есть сумма атомных весов элементов в молекуле. Вычисленный таким образом молекулярный вес часто называют истинным или физическим. Однако нри этом не учитывается, что вещества, полностью идентичные по химическим свойствам, могуг иметь различный молекулярный вес из-за различия в изотопном составе. Для низкомолекулярных веществ распространен метод В. Мейера. Он заключается в том, что взвешенную пробу вещества быстро испаряют в предварительно нагретом сосуде. Вследствие испарения вещества из сосуда вытесняется определенное количество воздуха, который собирают над водой в градуированный газометр. По объему вытесненного воздуха судят об объеме паров исследуемого вещества. А зная навеску вещества и его объем в газообразном состоянии при определенной температуре, рассчитывают молекулярный вес, используя закон Авогадро. Подобным методом можно определить молекулярный вес только таких веществ, которые переходят в нар без разложения. [c.84]

    Особенно важной является оценка работы Менделеева в области РЗЭ Богуславом Браунером. В статье Элементы редких земель , написанной Браунером по просьбе Менделеева и опубликованной впервые в седьмом издании Основ Химии в качестве Дополнения , подчеркивается определяющая роль работ Менделеева по установлению истинной валентности и правильного атомного веса церия и других РЗЭ [20]. Браунер отмечает, что именно Менделеев предложил для окислов большинства РЗЭ формулу КаОз. Позднее, — пишет Браунер [5, с. 316], — Мариньяк, Клеве, Нильсон, Крюсе, Браунер и их ученики, Джонс фон Шееле, Бендикс, Мутман и его ученики, Коппель и др., исследовали соединения редких земель, и их исследования еще больше доказали правильность взгляда Менделеева, так что состав главных основных окислов или земель выражают теперь всегда формулой РгОз - Так же как Урбен, Браунер считал очень важным для развития РЗЭ предложенный Менделеевым новый метод разделения смесей РЗЭ Двойные азотнокислые соли аммония были применены впервые Менделеевым (1873) для разделения лантана от дидима. Из смеси обеих кристаллизуется в присутствии свободной азотной кислоты прежде всего двойная соль лантана. Ауэр фон Вельсбах пользовался таким же раствором и разложил дидим на празеодим, двойная соль которого кристаллизуется с двойной солью лантана, и на неодим, двойная соль которого остается в маточном растворе [5, с. 321]. [c.87]

    Д. И. Менделееву не была известна истинная независимая переменная (заряд ядра), и ему пришлось расположить элементы в нескольких местах таблицы вопреки принятому принципу возрастания атомной массы. [c.454]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Выбор истинного числа делался на основании закона Авогадро. Так как в молекуле любого углеродного соединения не может содержаться меньше одного атома углерода, наименьшая доля этого элемента в молекулярном весе и должна соответствовать его атомному весу. Нужно было, следовательно, определить молекулярные веса различных летучих углеродных соединений, вычислить по их процентному составу в каждом случае долю углерода и выбрать из всех полученных чисел наименьшее. Такие определения давали число 12. Поэтому атомный вес углерода и следовало принять равным двенадцати. Ниже в качестве примера приведены расчетные данные для метана, эфира, спирта и двуокиси углерода. [c.25]

    Второй важной характеристикой атома после заряда ядра является его масса. Истинная масса атома элемента, выраженная в граммах, называется абсолютной атомной массой (т ). Так, масса атома углерода равна 1,99 10 кг. Однако выражать значения масс атомов с помощью общепринятых единиц массы — грамм или килограмм — неудобно, поскольку получаются очень малые значения, что затрудняет пользование ими. Поэтому при вычислении атомных масс за единицу массы принимают 712 часть массы атома изотопа углерода с массовым числом 12. Эта единица измерения атомной массы называется углеродной единицей (у. е.) или атомной единицей массы (а. е. м.) 1 а. е. м. = 1,667 10 кг. Она создает единую основу для химических и физических расчетов. [c.11]


    Сам закон, выявивший зависимость свойств элементов от атомных масс, бьи неоспорим. Последующие открытия новых, уточнение атомных масс уже открытых элементов убедили ученых в его истинности. Однако причины периодичности оставались неизвестными вплоть до возникновения и развития теории строения атома. [c.27]

    Второй важной характеристикой атома после заряда ядра является его масса. Истинная масса атома элемента называется абсолютной атомной массой Так, масса атома углерода [c.12]

    Для того, чтобы установить истинную формулу вещества, показывающую действительное число атомов в молекуле, необходимо, кроме процентного состава и атомных масс элементов, знать еще и молекулярную массу соединения. Для некоторых веществ простейшие и истинные формулы совпадают. [c.33]

    Неизвестные свойства элемента можно оценить как среднее арифметическое из свойств окружающих его в периодической системе соседей справа, слева, сверху и снизу (метод Менделеева). Из фрагмента длинной периодической таблицы, показанного справа, рассчитайте атомный вес 5е и сопоставьте его с истинным значением (78, 98). [c.10]

    Атомный вес элемента будет равен весу JII истинных атомов этого элемента. Если элемент существует только в одной изотопной форме, то его атомный вес в граммах будет выражаться массовым числом. Действительно, в 12 г С содержится истинных атомов, или -12 частиц с массой, равной 1 а. е. м. В свою очередь атомная единица массы соответствует [c.19]

    А = М loo ll Наименьшее из полученных значений принимают за истинную относительную атомную массу элемента. [c.18]

    Среди известных элементов, атомный вес которых Менделеев нредлон ил изменить на основании определения их места в периодической системе, несколько особое положение занимает бериллий. Во-первых, это был первый элемент, в атолшом весе которого Менделеев произвел крупное изменение (в полтора раза) в самом процессе открытия периодического закона (1 марта 1869 г.) все остальные крупные изменения он сделал значительно позднее, примерно полтора года спустя, после длительной работы над своим открытием правда, относительно неточности атомного веса урана Менделеев стал догадываться уже летом 1869 г., однако предположение о его истинном атомном весе, как и других металлов, было сделано более года спустя. [c.7]

    Из изложенного выше можно видеть, что на рубеже XVIII и XIX столетий философская концепция атомно-корпускулярного учения пользовалась широкой известностью и признанием. Было однажды сказано (В. Нернст, 1893 г.), — указывал Партингтон,— что атомистическая теория Дальтона одним усилием современной науки восстала как феникс из пепла древней греческой философии . Легендарный феникс — своеобразная птица — миф. Все что о ней написано, не соответствует истине столь же неверно, пожал5гй, и указание, что плодотворная теория возникла в один момент на развалинах давно забытой гипотезы. Греческая теория атомов, как мы видели, никогда не была забыта, и терпеливый исследователь, если серьезно того желает, может проследить ее влияние и ее постепенное видоизменение в течение столетий, протекших от Демокрита до Дальтона [16, стр. 282]. Многие крупные философы, химики и физики в той или иной форме привлекали атомную гипотезу для объяснения свойств и состава материи и некоторых физических (теория теплоты) и химических (теория растворения) процессов. В свою очередь из химии они привлекали материал для иллюстрации и аргументации отдельных положений (существование первичных элементов) атомной гипотезы. [c.116]

    Однако в некоторых случаях требуется знать истинную массу веидества (или тела), причем влиянием погрешностей от неравно-П/ечести весов и взвешивания в воздухе пренебречь уже нельзя. Это имеет место, например, при проверке разновесок, при определении емкости измерительных сосудов для жидкостей и газов (проводимом по массе вмещаемой ими воды), при установлении атомных весов элементов и т. д. [c.34]

    Причина неудач Гладсона в немалой степени состоит и в односторонности его подхода. Он ударился в другую крайность. Увлекшись атомными весами, он забыл о второй основе систематизации — химическом сходстве-различии. Она могла стать вторым ориентиром в установлении порядка следования элементов друг за другом, заставить усомниться в истинности атомных весов отдельных химических элементов и побудить к их уточнению. Подобные упущения допускали и др> гие систематизаторы, в том числе близкие предшественники Менделеева и, даже, он сам. [c.32]

    Сегодня принято говорить о специфичности Периодического закона, об обособленности его от других законов природы, даже возвышении над ними Такое мнение ошибочно. Б. М. Кедров впервые указал на то, что Периодический закон вливается в более широкое явление природы — повторяемость в развитии, что отождествляется с повиточностью в спирали. Д. И. Менделеев, по объективным причинам, не мог подняться до такого уровня понимания системы. Он не располагал знаниями об истинных причинах противоречивого развития ряда химических элементов. В качестве непрерывной основы у него выступал атомный вес. Однако впоследствии оказалось, что он растет в естественном [c.151]

    Как пишет Н. П. Агафошин [2] "Менделеев иногда шел "наперекор атомному весу . По существу, это был первый сигнал о ненадежности атомного веса, как основания систематизации. Уже в то время надо было насторожиться. Если это закономерность, то она должна быть без аномалий и распространяться на весь ряд. Впоследствии место атомного веса в формулировке Периодического закона занял порядковый номер химического элемента, который приравняли к заряду ядра, а по существу, это число протонов в ядре. Атомный вес послужил Д. И. Менделееву только ориентиром в расположении химических элементов в ряд один подле другого , но истинным основанием поступательной тенденции развития не был. Но уже эта, хотя не очень строгая основа, стала становым хребтом ряда, объединяющим все химические элементы в органически целостную систему. В этом и состояла интегрирующая роль атомного веса. [c.152]

    Одним из наиболее выдающихся химиков-аналитиков первой половины XIX в. был шведский ученый И. Я. Берцелиус. Он проанализировал большинство известных в то время химических соединений и определил соединительные веса всех известных тогда химических элементов. Следует отметить высокую точность этих определений, многие из которых, вьшол-иенные в 1818 г., весьма близки к современным. Так, для углерода Берцелиус нашел атомный вес 12,12, для кислорода 16,0 (приатомном весе водорода, равном 1), для серы — 32,3. Некоторые атомные веса были опре-дтлены менее точно и, кроме того, были кратными величинами истинных атомных весов так, для железа Берцелиус принял атомный вес 109,1, так как окислам железа в то время приписывали состав РеОг и РеОз. Берцелиус ввел современные знаки химических элементов, открыл ряд новых элементов (церий, селен, торий). [c.11]

    Следующий важный этап развития периодического закона (1912 г.) связан с работами Мозли (1П 3), который показал, что истинной основой этого закона являются не атомные веса, а положительные заряды ядер атомов, численно выражаемые (в е-единицах) атомными номерами соответствующих элементов. С принципиальной стороны такое изменение трактовки периодического закона не вызывает возраже- [c.218]

    Важным этапом, способствовавшим выработке единых взглядов на многие важнейшие вопросы химии, была международная встреча химиков в Карлсруэ в 1860 г. Химики собрались для того, чтобы прийти к единому мнению по главным спорным вопросам химии точное определение понятий атома, молекулы, эквивалента, атомности, основности определение истинного эквивалента тел и их формул установление одинакового обозначения и рациональной номенклатуры. Получила наконец признание гипотеза А. Авогадро, создавшая основу для определения правильных атомных и молекулярных масс, эквивалентов. В результате вступили в свои права старые атомные массь Я. Берцелиуса и был наведен некоторый порядок в написании формул органических соединений, хотя бы в отношении их состава. Благодаря работам Э. Франкланда в области металлоорганических соединений возникло ученее о постоянном валентности элементов, о присуш,ей им способности постоянно удовлетворять свое сродство путем сочетания со строго определенными весовыми количествами других элементов. [c.13]

    С развитием электронной теории строения атомов стало ясно, что химические свойства эле.ментов являются функцией электронной структуры атомов. Отсюда следует, что в качестве объективного критерия, однозначно определяюи его положение элемента в периодической системе, целесообразно выбрать именно электронное строение атома. Поэтому в развитии периодического закона выделяют три этапа. На первом этапе в качестве аргумента, определяющего свойства элементов, была выбрана атомная масса и закон был сформулирован Д. И. Менделеевым следующим образом Свойства элементов, а также формы и свойства их соединений находятся в пер1[одической зависимости от нх атомного веса . На втором этапе было выяснено значение атомного номера, который, как оказалось, определяет заряд ядра атома. Открытие изотопов и изобаров показало, что истинным аргументом, определяющим природу элемента, является именно заряд ядра, а не атомная масса. Действительно, [c.6]

    Однако в те времена многих клавишей не хватало. Было известно 63 элемента из 92 естественно существующих. Многие клавиши издавали фальшивые звуки . Так, Д. И. Менделееву пришлось изменить атомные массы урана и тория, которые тогда принимали равными 116 и 120 (вместо 232 и 240) и атомную массу циркония, принимавшуюся в то время равной 138 (вместо 91). Д. И. Менделеев сумел увидеть (вернее, предвидеть) основной закон, согласно которому многие свойства элементов (валентность, атомные объемы, коэффициенты расширения и др.) изменяются периодически с возрастанием атомной массы элементов. Открытие периодического закона затруднялось из-за его сложности. Размеры периодов не одинаковы. Если в первом периоде (Н, Не) содержится всего два элемента, то во втором (Е1—Ые) — восемь, в третьем (Ма—Аг) — снова восемь, в четвертом (К—Кг)—восемнадцать, в пятом (КЬ—Хе)—тоже восемнадцать, в шестом (Сз—Кп)—тридцать два и, наконец, седьмой период оказывается недостроенным. Отметим, что числа элементов в периодах (2, 8, 8, 18, 18, 32) подчиняются общему закону 2п . При п = это выражение дает 2 при л = 2—8, при я=3—18 и при =4— 32. Кроме того, в середине периодической таблицы элементов находится 14 редкоземельных элементов, многие свойства которых (например, валентность) практически не изменяются, несмотря на увеличение атомной массы Трудность открытия периодического закона заключа лась и в том, что истинной независимой переменной, оп ределяющей свойства элементов, должна быть не масса а число электронов в атоме, т.е. заряд ядра. Д. И. Мен делеев, естественно, принял массу за такую переменную так как в механике она в значительной степени опреде ляет движение частиц. Атом был электрифицирован много позднее. Если бы были известны изотопы (атомы с одинаковым зарядом ядра и разными массами, например, водород и тяжелый водород), то, располагая их в ряд по величине массы, вряд ли можно было бы открыть периодический закон. Это удалось потому, что между массовым числом и зарядом ядра имеется определенная связь. Так, в начале таблицы элементов массовое число приблизительно в два раза больше заряда ядра. Атомная масса элемента определяется также его изотопным составом. При расположении элементов по их массовым числам Д. И. Менделееву при составлении таблицы при- [c.312]

    Атомные массы элементов показывают, во сколько раз масса данного атома больше /п массы атома углерода С. Например, относительная атомная масса железа 55,85 у. е. показывает, что атом железа тяжелее /12 атома , С в 55,85 раза. Масса углеродной единицы составляет 1,66-г. Следовател1.но, истинную ма су одного атома а и относительную а омную массу его А для любого элемента вычисляют по формулам [c.18]


Смотреть страницы где упоминается термин Элементы, атомность истинные: [c.41]    [c.460]    [c.8]    [c.8]    [c.26]    [c.43]    [c.265]    [c.295]   
История химии (1966) -- [ c.33 ]




ПОИСК







© 2025 chem21.info Реклама на сайте