Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклование область

    Коэффициент теплопроводности полимеров зависит от температуры. У аморфных полимеров в стеклообразном состоянии к растет с повышением температуры, достигает максимума, а затем либо колеблется (натуральный каучук, ПВХ, полиизобутилен), либо остается постоянным. На рис. 5.10 показана температурная зависимость к для непластифицированного и пластифицированного ПВХ. Пластификатор смещает температуру стеклования, поэтому в зависимости от области температур, в которой измеряется к, его значение либо ниже, либо выше значения к для непластифицированного ПВХ. [c.121]


Рис. 8. Зависимость тедшератур плавления (область 1) и стеклования (область 2) ПВС от содержания в нем воды. Заштрихованы области, соответствующие различным маркам волокно- и пленкообразующего ПВС, различающимся содержанием ацетатных групп, разветвленностью и другими показателями. Рис. 8. Зависимость тедшератур плавления (область 1) и стеклования (область 2) ПВС от содержания в нем воды. Заштрихованы области, <a href="/info/1057823">соответствующие различным</a> <a href="/info/128171">маркам волокно</a>- и пленкообразующего ПВС, различающимся содержанием <a href="/info/456280">ацетатных групп</a>, разветвленностью и другими показателями.
    Особенно существенно для полимеров влияние темп-ры в областях перехода от хрупкого поведения к вынужденноэластическому и далее — к вязкотекучему. Ниже темп-ры хрупкости износ с ростом темп-ры увеличивается из-за уменьшения прочности. Между темп-рами хрупкости и стеклования (область вынужденной высокоэластичности) износ с ростом темп-ры может уменьшаться, т. к. растет разрушающая деформация. Выше темп-ры стеклования влияние темп-ры м. б. различным в зависимости от степени изменения упруго-прочностных свойств и коэфф. трения. Если сохраняется физич. [c.456]

    Следовательно, если в низкомолекулярных стеклах температуры стеклования и хрупкости совпадают или достаточно близки друг другу, во многих полимерных стеклах возникают эластические свойства в широком интервале температур, т. е. значительная область, разделяющая температурные точки хрупкости и стеклования — область стеклообразного состояния полимеров. [c.139]

    В стеклообразном состоянии полимер является упруго-твердым веществом и его деформируемость при действии внешних механических сил очень невелика, в особенности при температурах, не слишком близких к температуре стеклования (рис. 200). В области температуры стеклования происходит сильное увеличение дефор- [c.572]

    Переходная область занимает интервал в 5 °С, и ниже этого интервала коэффициент расширения уменьшается до 1,8-10- . Экстраполированные прямые линии пересекаются при —22,5 °С эта температура может быть принята за температуру стеклования, поскольку битум становится хрупким. Бернис и Вуд [331 опреде- [c.25]

Таблица 2.1. Температуры стеклования и плавления ряда полимеров, области их применения Таблица 2.1. <a href="/info/4977">Температуры стеклования</a> и плавления <a href="/info/1532598">ряда полимеров</a>, области их применения

    НОЙ области Ti- При этом изменяется вязкость парафина от 10 -1013 до 1,0-10 Па с, но никаких изменений во взаимной упорядоченности частиц, т.е. никаких фазовых превращений, не происходит. Температура перехода в твердое агрегатное состояние (температура стеклования Т ) и температура перехода в вязкотекучее состояние Tj практически совпадают, т.е. для низкомолекулярных веществ Т = Т = Т . [c.132]

    Вопрос. Температурные области стеклования полиакрилонитрила и поливинилового спирта близки и соответствуют 110-120 °С. Объясните, почему при [c.133]

    При изометрическом нагреве волокон напряжение, необходимое для достижения заданной деформации е, постепенно увеличивается (рис. 3.6). В области температуры стеклования это напряжение достигает максимального значения а , а затем падает. Значения увеличиваются с ростом степени ориентации полимера и уменьщаются с понижением степени кристаллич- [c.133]

    Вязкость полимеров в области температуры стеклования достигает величины порядка 10 пуаз, при температуре текучести она снижается до 10 пуаз. [c.40]

    Если во всех экспериментах применяется один и тот же режим охлаждения (непрерывный или с остановками), то положение области стеклования на температурной шкале для всех свойств совпадает и не зависит от частоты механических или ультразвуковых колебаний. Вообще механические, электрические и другие виды силовых воздействий из-за самой природы структурного стеклования не влияют на Тс, если эти внешние воздействия достаточно малы. При оценке многих механических воздействий, например при измерении модулей упругости, необходимо считаться с тем, что только малые напряжения и деформации практически не влияют на структуру полимеров и, следовательно, на температуру стеклования. [c.87]

    Температурная область, в которой полимерные цепи имеют возможность интенсивного сегментального движения, называется температурной областью стеклования (при охлаждении полимера) или расстекловывания (при нафевании полимера) и характеризуется температурой стеклования В этой температурной области Ёвэ становится основной составной частью об- [c.136]

    Эксперименты выявили ряд особенностей подобных систем, так Б.Г. Печеный в 70-е годы изучал ФП в битумах, им были установлены 2 температуры стеклования и изучено плавление битумов [31]. Показано что соответствующие интервалы температур ФП на порядок шире чем в полимерах. Но систематических исследований в этой области до сих пор не проводилось. [c.31]

    Современные представления позволяют рассматривать процесс стеклования (размягчения), как квазиравновесный ФП 2 рода (кинетический ФП) [37]. Это означает, что переход из стеклообразного состояния в жидкое (размягчение) может быть представлен как ФП 2 рода, при котором в области низких температур обращается в ноль или резко падает энтропия переохлажденной полимерной жидкости из-за уменьшения числа кон-формационных состояний макромолекул. Это дает возможность формально ввести параметр порядка, который связан с энтропией системы и характеризует процесс стеклования (размягчения). [c.31]

    В определенной области температур жидкое связующее переходит в стеклообразное состояние. Все свойства связующего резко меняются уменьшается удельный объем, увеличивается твердость, возникает сопротивление деформации. Температура, при которой происходит это явление, называется температурой стеклования. Температура стеклования - это не точка, а средняя температура интервала. Стеклование не является фазовым переходом, стеклообразное связующее имеет аморфную структуру и с термодинамической точки зрения может рассматриваться как переохлажденная жидкость. [c.82]

    Увеличение жесткости структуры макромолекул достигается путем совместной полимеризации основного мономера с другим более полярным компонентом. Одновременно с повышением температуры стеклования такого сополимера сужается область [c.45]

    Поскольку скорость гибели ыакрорадикалов в твердых полимерах во многих случаях подчиняется закону второго порядка, естественно сделать предположение, что встреча радикалов осуществляется в результате их трансляционной диффузии. Однако такое упрощенное представление не согласуется в первую очередь с весьма низкими значениями коэффициентов диффузии полимерных сегментов. Оценка показывает [57], что в полистироле при температуре стеклования (область быстрой рекомбинации) коэффициент сегментальной днффуз1 и составляет величину порядка см -с-. Время диффузии t на расстояние / = — 0,1 мкм, в соответствии с формулой Эйнштейна [c.58]

    При температуре стеклования Тд в аморфных полимерах наблюдается переход второго рода, и их состояние изменяется от хрупкого к высокоэластическому. Хотя значение Тд обычно задается одним числом, на самом деле это интервал температур шириной 5—10 °С. С увеличением скорости нагрева и внешнего гидростатического давления Тд повышается. Значение Тд (см. табл. 2.1) зависит от химической структуры полимера, пластицирующих добавок, а в случае сополимеров — от типа мономеров. Ниже температуры стеклования модуль сдвига имеет порядок 10 МПа и не зависит от времени. Вблизи Тд, и особенно в области от Тд до Тд + 30 °С, модуль резко падает до значения порядка I МПа, которое харак- [c.257]


    Степень деформации может сильно меняться с изменением таких параметров окружающей среды, как температура (ниже температуры стеклования /ст жесткость аморфной фазы может быть значительной), и в присутствии пластификаторов, которые увеличивают деформацию. В полимерных мембранах существуют также так называемые паракри-сталлические области переменной степени кристалличности, которые обладают средним сопротивлением деформации по сравнению с кристаллической и аморфной областями. [c.72]

    Полимеры Плотность, 2 см прочность разрывн., км Удлинение. % Область размягче- ния Температура стеклования, °С Пот еря прочности волокна пр 100 " по сравнению с прочностьк> при 20" ."  [c.344]

    Обычно полимеры обладают способностью поглощать некоторые жидкости (с которыми совместим данный полимер). При этом происходит процесс набухания полимера, сопровождающийся увеличением его объема. Вследствие проникания молекул жидкости между звеньями цепей полимера увеличиваются расстояния и ослабляются связи между ними. Это и приводит к понижению температуры стеклования, уменьщению вязкости и к другим эффектам, обусловленным ослаблением связей между молеку. лами однако одновременно снижается и температура текучести. В результате температурный интервал, отвечающий области высокоэластичного состояния, смещается в область более низких температур. На рис. 216 показано влияние содержания трибутирина (сложного эфира глицерина и масляной кислоты) в поливинилхлориде на эти температурные параметры, а на рис. 217 представлено влияние пластификатора на термомеханические кривые, подобные рассмотренным ранее (см. рис. 202). При повышении содержания пластификатора (кривые 2 и 3) температуры стеклования и текучести понижаются, при достаточной концентрации пластификатора постепенно сближаются, причем область существования полимера в высокоэластичпом состоянии уменьшается. Эта область должна ы д [c.590]

    На рис. 67 схематически представлены стадии перехода НДС из одного состояния в другое в зависимости от температуры. Разделение схемы на две области вне пределов зоны молекулярных растворов ( Ж) основано на различии в прочности связи внутри структурных единиц и между ними. Химический состав, порядок расположения молекул, расстояние между ними, структура студней, золей и гелей в двух областях АЕ и ЖМ) и их свойства могут отличаться принципиально друг от друга. Область, в пределах которой действуют ММВ, имеет участки АБ (студни) и ГЕ (золн). Участок АБ, в свою очередь, состоит из двух зон, в которых соответственно образуются упру-го-хрупкие и упруго-пластичные студни (на рис. (з7 они не показаны), как и участок ГЕ, который включает зону ГД (кинетически неустойчивое состояние золя). Каждая зона отделена друг от друга характерными температурами, в пределах которых сохраняется одна и та же закономерность изменения свойств НДС. Соответственно пх именуют в точках температурами Б — стеклования (кристаллизации), В — плавлепия, Д — перехода в устойчивое дисперсное состояние, Е — перехода в состояние молекулярного раствора. В зоне ЕЖ нефтяная миогокомсюнент-пая система находится в состоянии молекулярных растворов. В некоторых остатках (пеки, битумы) зона ЕЖ вообищ может отсутствовать. [c.185]

    Измерить г и 2 для битумов невозможно, и исследователи используют в качестве градуировочной жидкости бензол. Результаты,полученные на серии битумов в области температур от 60 до 225 °С, показали, что поверхностное натяжение по мере снижения температуры линейно возрастает. Ниже определенной температуры (которая зависит от типа битума) температурный коэффициент поверхностного натяжения резко увеличивается, что объясняется автора--ми [571 изменением, происходящем в структуре бнтума. Поскольку поверхностное натяжение зависит от групп, лежащих на поверхности, оно чувствительно к изменению структуры молекул. Однако каких-либо резких изменений в структуре битума не наблюдается, вплоть до температуры стеклования. Такое несоответствие следует в значительной степени приписать вязкостным эффектам, которые затрудняют измерение при помсщи газовых пузырьков. Другие факторы будут обсуждаться ниже. [c.56]

    Широко распространено мнение о том, что в морфологическом отношении аморфные полимеры не имеют упорядоченной структуры и состоят из скрученных и перепутанных молекул. При температурах, меньших температуры стеклования, молекулы полимера практически неподвижны. Колеблются и вибрируют только атомы, причем амплитуда колебаний с ростом температуры увеличивается. Вблизи температуры стеклования колебания соседних атомов принимают кооперативный характер, что при достижении Tg приводит к сегментальному движению молекулярных цепей. При этой температуре межсегментальная энергия связи (вторичные силы) становится соизмеримой с энергией теплового движения. Частота колебаний сегментов оказывается достаточно высокой для того, чтобы сообщить эластичность аморфным полимерам (как и кристаллическим, поскольку они содержат аморфные области), однако она слишком мала для того, чтобы можно было реализовать течение с типичными для технологической практики скоростями, из-за чрезмерно высоких значений вязкости. Только при температурах, на 40—50 °С превышающих температуру стеклования, вязкость типичных аморфных полимеров снижается до значений, приемлемых для переработки. [c.67]

    Взаимное упорядочение полипептидных цепей (кристаллизация) происходит не только по мере уменьшения содержания воды в системе (при высушивании белкового субстрата), но и при нагревании в инертной среде. Максимальная скорость кристаллизационных процессов достигается для обоих белковых компонентов натурального шелка - фиброина и серицина - в области 180-200 °С. Аморфный серицин легко растворяется в воде при 20 °С при pH 7,0 ( 0,1), в то время как кристаллическая форма его оказывается практически нерастворимой. Температуры стеклования Гс фиброина и серицина близки и находятся в области 173-175 °С и 169-172 °С соответственно. Оба фибриллярных белка, составляющих 97-98% массы коконной нити, хараетеризуются примерно одинаковым сродством к воде теплоты гидратации фиброина и серицина составляют соответственно 50,9 и 52,1 кДж/моль. [c.376]

    Из полученных уравнений следует, что в системе с концентрационным хаосом в критическом состоянии существует распределение радиусов корреляций по закону ехр -и параметров порядка по закону ехр(-1 ). Это означает, что в таких системах и.меет место пересечение критических областей ФП отдельных компонентов. Кроме того, с -ществует дополнительная статистическая коррелированность и дополнительное расширение спектров времен релаксаций компонентов. Отсюда следует качественно новый эффект - пространственно-временное совмещение фазовых переходов. Например, процесс стеклования еще не закончился, а началась кристаллизация. Отсюда вытекает неизбежная полиморфность многокомпонентных систем с концентрационным хаосом, т е. их значительное структурное разнообразие. В отдельных фракциях при небольшо.м отклонении от среднего значения распределение радиусы корреляции и параметры порядка 28 [c.28]

    Кристаллические полимеры, как и аморфные, характеризуются температурой стеклования, несколько условно разграничивающей области проявления упругих и эластических свойств полимера. Температура плавленпя кристаллического полимера является температурой его перехода от двухфазного кри-сталлическо-аморфного состояния к полностью аморфному. [c.52]

    Увеличение содержания звеньев винилацетата приводит к снижению температуры размягчения сополимера, придает ему большую текучесть в размягченном состоянии, увеличивает упругость в области температур, лежащих ниже температурр, стеклования сополимера, и облегчает растворимость его в слабополярных растворителях. Практически применяемые сополимеры содержат около 15% звеньев винилацетата. [c.516]

    Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура полимера непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц (сегментов), приводящих к изменению ближнего и дальнего флуктуационного порядка, т. е. надмолекулярной организации аморфного полимера. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего при некоторой температуре, называемой температурой стеклования Тс, структура полимера фиксируется. Отсюда следует, что в данном образце застеклованного полимера структура примерно та же, что у незастеклованного полимера в области стеклования. [c.83]

    Приведенные выше рассуждения соответствуют релаксационной теории структурного стеклования, впервые предложенной Кобеко [39, с. 176]. Эта теория учитывает, однако, йзл 1енение структуры жидкости только в пределах ближнего порядка и поэтому не объясняет всех особенностей процессов стеклования а полимерах. Например, в полимерах выше Тс с изменением темпе ратуры, кроме изменения структуры на уровне ближнего порядка, идут процессы структурообразования, например процессы формирования флуктуационных надмолекулярных структур, процессы обратимого и необратимого структурирования и т. д. Это приводит к более сильной температурной зависимости физических свойств в области стеклования. [c.85]

    Это соотношение, впервые предложенное Бартеневым [40, с. 21], служит математическим определением температуры стеклования, где д — абсолютное значение скорости охлаждения С — постоянная, равная, по Волькенштейну и Птицыну, кТ 1ё (Тс) Тс) энергия активации при температуре стеклования. Постоянная С примерно равна 20 °С для неорганических и 10 °С для органических стекол. Читатель без особого труда разберется в физическом смысле константы С, обратившись к критерию Тернбулла — Коэна и соотношениям термокинетики. Если скорость нагревания хи) та же, что и скорость охлаждения, т. е. ни = д, то температура размягчения Гр равна Гс и границы областей стеклования и размягчения совпадают. [c.86]


Смотреть страницы где упоминается термин Стеклование область: [c.256]    [c.459]    [c.12]    [c.429]    [c.107]    [c.338]    [c.585]    [c.222]    [c.26]    [c.46]    [c.207]    [c.216]    [c.43]    [c.41]    [c.68]    [c.282]    [c.62]    [c.83]    [c.84]   
Химия и технология полимерных плёнок 1965 (1965) -- [ c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Деформируемость в области стеклования

Механические потери в области стеклования

Температура стеклования область перехода

Температурно-временная эквивалентность вязкоупругого поведения аморфных полимеров и уравнение Вильямса — Лэндела — Ферри в области стеклования



© 2024 chem21.info Реклама на сайте