Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жаростойкость также

    Диффузионное насыщение поверхности стали алюминием применяют в основном для повышения жаростойкости стали, в окислительных и особенно в сероводородсодержащих средах. Алитированная сталь при температурах 500—600 °С успешно конкурирует с хромоникелевой нержавеющей сталью типа 18—8 в средах, содержащих сероводород. На выносливость стали алитирование влияет по-разному в зависимости от толщины слоя. Так, порошковое алитирование на глубину 0,1—0,2 мм резко снижает предел выносливости стали и практически не влияет на коррозионную усталость. Алитирование на глубину 0,04—0,05 мм незначительно влияет на предел выносливости стали и более чем в 2 раза повышает условный предел коррозионной усталости. Алитирован-ный слой также понижает влияние концентраторов напряжений, особенно в коррозионной среде. [c.88]


    Шлакопортландцемент более устойчив, чем портландцемент, в пресных и сульфатных водах вследствие пониженного содержания в цементном камне на его основе свободного гидрата окиси кальция. Стойкость против агрессивного воздействия углекислых вод у него примерно такая же, как и у портландцемента. Шлакопортландцемент отличают повышенная жаростойкость, также обусловливаемая невысоким содержанием в цементном камне гидрата окиси кальция, и хорошая сцепляемость с арматурой в бетоне. [c.445]

    Жаростойкость металлов, а также законы роста толщины пленок на металлах к во времени т, т. е. /г = / (т), в значительной степени зависят от защитных свойств образующихся пленок. [c.32]

    Основная цель дополнительного легирования хромистых сталей кремнием — получение сплавов, обладающих наряду с высокой жаростойкостью также и достаточной жаропрочностью, т. к. кремний в значительной степени повышает недостаточную у чисто хромистых сталей прочность при высоких температурах. Наиболее широко применяются сплавы, содержащие от 3 до 20% хрома и до 4% кремния с возможными добавками Мо, А1, Ш, Т1. Они известны под собирательным названием с и л ь х р о -мое. Сильхромы с малым содержанием углерода (до 0,25%) нашли меньшее применение из-за сравнительно меньшей прочности при высоких [c.487]

    При высокой температуре, а также при действии коррозионных сред применяют высоколегированные стали и сплавы. В зависимости от свойств их подразделяют на 1) коррозионно-стойкие (нержавеющие) стали, обладающие стойкостью против электрохимической и химической коррозии 2) жаростойкие (окалиностойкие), [c.15]

    В настоящее время каталитические процессы широко используются в промышленности. Сейчас даже трудно назвать крупное производство химической промышленности, где бы не применялись катализаторы. Получение спиртов, альдегидов, аммиака, серной и азотной кислот, переработка каменного угля в жидкое топливо, процессы крекинга нефти при получении моторных топлив, синтез каучука, производство пластмасс, красителей, получение маргарина и других пищевых продуктов — вот далеко не полный перечень процессов, где широко используются катализаторы. В ряде случаев за счет применения катализаторов удается значительно снизить температуру проведения реакции, что позволяет уменьшать тепловые затраты и использовать менее жаростойкую аппаратуру, а также устранять нежелательные побочные реакции. [c.161]


    Основу аустенитной жаропрочной стали печных труб составляет железо (более 45%). Входящие в сплав легирующие элементы оказывают существенное влияние иа жаропрочность н жаростойкость стали. Одни.м из важнейших легирующих элементов является хром. Содержание его в сталях печных труб колеблется в пределах 18—30%. При введении хрома повышаются жаропрочность, сопротивление ползучести и длительная прочность, а также увеличивается сопротивление окислению. Сталь, содержащая хром, на диаграмме состояния системы Ре—Сг может характеризоваться замкнутой областью (петлей) 1)-твердых растворов, обладающих устойчивой структурой материала. [c.29]

    Влияние защитной оксидной пленки на внутренней поверхности труб. Особое значение для предотвращения науглероживания жаростойких сталей имеет защитная оксидная пленка, образующаяся на поверхности труб в результате химической реакции на границе раздела фаз газ — металл. К защитным пленкам относят тугоплавкие оксиды металлов. Оксиды железа, например, имеют низкую температуру спекания, характеризуются высокой способностью к самодиффузии и диффузии элементов через них поэтому такие оксиды плохо защищают металл от разрушения. Оксиды же хрома и кремния, наоборот, обладают очень высокими температурами плавления и спекания, а также малой диффузионной способностью, вследствие чего хорошо защищают металл. [c.170]

    С соответствующими металлами кобальт, родий и иридий образуют твердые растворы и интерметаллические соединения, что определяет физико-химические и механические свойства их сплавов. Особо широко используются кобальтовые сплавы. Многие из них жаропрочны и жаростойки. Например, сплав виталлиум (65% Со, i8% Сг, 3% Ni и 4% Мо), применяемый для изготовления деталей реактивных двигателей и газовых турбин, сохраняет высокую проч-I ость и практически не подвергается газовой коррозии вплоть до 800—900°С. Имеются также кислотоупорные сплавы, не уступающие платине. Кобальтовые сплавы типа алнико (например, 50% Fe, 24% Со, 14% Ni, 9% А п 3% Си) применяются для изготовления постоянных магнитов. Для изготовления режущего инструмента важное значение имеют так называемые сверхтвердые сплавы, представляющие собой сцементированные кобальтом карбиды вольфрама (сплавы ВК) и титана (сплавы ТК). Большое значение имеет кобальт как легирующая добавка к сталям. [c.596]

    Для того чтобы металлы и сплавы возможно было применять при высоких температурах, они должны обладать, кроме устойчивости по отношению к газовой коррозии (жаростойкостью), также и жаропрочностью, т. е. способностью сохранять удовлетворительные механические свойства при высоких температурах. Для многих металлов и сплавов предел температуры, при которой они окисляются еще достаточно медленно, обычно выше температуры начала резкого падения механических свойств. [c.19]

    Жаростойкость дисперсноупрочненных композиций зависит также от метода их получения (повышают жаростойкость методы получения композиций, обеспечивающие меньшую степень коагуляции частиц упрочняющих окислов в металлической матрице), пористости композиций (которая снижает жаростойкость), температуры (которая не-только повышает скорость окисления, но и изменяет стабильность упрочняющих окислов в металлической матрице, механизм их попадания в окалину, а также механизм и характер контроля процесса окисления), температуры спекания композиций, изменения летучести окалины, отслаивания окалины и др. [c.111]

    Хорошая жаростойкость никеля еще повышается при добавлении 20 % Сг. Этот сплав устойчив к окислению на воздухе до 1150 °С (один из наиболее термостойких сплавов, совмещающий отличную стойкость к окислению с хорошими физическими свойствами как при низких, так и при повышенных температурах торговое название в США нихром У). Устойчивость промышленных марок этого сплава к окислению значительно повышается, когда во время плавки в них добавляют металлический кальций в качестве раскислителя, предотвращающего окисление сплава по границам зерен. Полезны также небольшие количества циркония, [c.207]

    Естественно, что при жаростойком легировании должно быть обращено внимание на доступность легирующего элемента и экономичность легирования, а также на обеспечение требуемых свойств сплава, в том числе технологичности (обрабатываемости) и необходимой жаропрочности. [c.116]

    На свойства стали большое влияние оказывают также легирующие добавки. Хром придает стали жаростойкость и устойчивость к коррозии (вследствие образования прочной защитной пленки из СггОз и оксидов железа). При добавлении к стали сравнительно [c.558]

    Используют также кремнистые и кремнемолибденовые чугуны для отливки деталей, работающих в агрессивных средах, жаростойкие и коррозионно-стойкие чугуны (ГОСТ 7769—82), детали из которых работают при повышенных температурах в агрессивных средах. [c.100]


    Сверху каждой радиантной камеры помещается конвекционная камера, которая также имеет прямоугольную форму, футерована легким жаростойким бетоном и содержит пакет горизонтальных ошипованных труб. Конвекционная камера заканчивается сборником продуктов сгорания, имеющим форму усеченной пирамиды. [c.143]

    Важной характеристикой материала труб печей является жаростойкость - сопротивляемость металла термическим ударам, возникающим при быстром нагревании и охлаждении труб, а также сопротивл.те.мость высокотемпературному воздействию, которое проявляется в виде высокотемпературной коррозий и т.д. [c.197]

    О °С до —40 С, а также для аппаратов группы 1, работающих прн температуре ниже 450 °С или давлении менее 5.0 МПа, проводятся по требованию технических условий изделия или технического проекта. 17. Коррозионностойкая, жаростойкая н жаропрочная толстолистовая сталь по ГОСТ 7350—77 должна быть заказана горячекатаной, термически обработанной, травленой, с обрезной кромкой, с качеством поверхностн по группе М2б н требованием по стойкости к межкристаллитной коррозии. При необходимости должно быть, оговорено требование по а-фазе. 18. Механические свойства листов толщиной до 12 мм проверяются на листах, взятых из партии. 19. Испытание материала на механическое старение производится в том случае, если при изготовлении аппаратов, эксплуатируемых прн температуре свыше 200 С, сталь подвергается холодной деформации (вальцовка, отбортовка. гибка и др.). [c.31]

    Кремнийорганические полимеры применяются при создании многих видов лаков и клеев, эмалей, обладающих жаростойкими и атмосферостойкими свойствами, а также при изготовлении стеклотекстолита, пенопласта и других материалов, применяющихся в строительном деле. Однако в основном их используют как соединения, обладающие прекрасными гидрофобными свойствами, при добавлении которых в растворы или бетоны достигается полная водостойкость последних. [c.427]

    Большинство боридов -элементов очень тверды, жаростойки (2000—3000°С) и химически устойчивы. Например, бориды -элементов MBj, а также гексабориды /-элементов МВв, как правило, устойчивы против минеральных кислот даже при нагревании, но разрушаются расплавленными щелочами и пероксидами. [c.510]

    Для изготовления аппаратуры, подвергающейся действию коррозионноактивных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхиосги [c.554]

    Основная масса выплавляемого никеля (около 80%) используется для получения никелевых сплавов и легированных сталей (нержавеющих, бронебойных, жаростойких и др.). Из никеля изготавливают специальную аппаратуру химических производств. Он применяется также для декоративно-защитных покрытий на других металлах. Палладий и платина используются для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов химических производств, для термометров сопротивления и термопар а также электрических контактов. Из платины изготавливают нерастворимые аноды, например, для электролитического производства надсерной кислоты и перборатов. Палладий и платина применяются в ювелирном деле. [c.646]

    В настоящее время наиболее радикальным методом борьбы с коррозией стали при использоиании неочищенного жидкого топлива считают применение новых сплавов (для элементов конструкций высокотемпературных печей), которые не взаимодействуют с V2O5. Легирование хромоникелевых сталей марганцем и кобальтом (температура плавления эвтектики соответственно 1240 и 880 °С), а также другими элементами позволяет значительно повысить жаростойкость материалов. [c.178]

    ПОРОШКОВАЯ МЕТАЛЛУРГИЯ (металлокерамика) — группа технологических методов производства металлических порошков или композиций металлов с неметаллами и спекание из них изделий.. Методы П. м. приобрели важное значение в связи с необходимостью переработки тугоплавких металлов, соединений и сплавов, а также потребностью в тугоплавких, жаростойких, жаропрочных и коррозионностойких материалов. [c.202]

    Основными способами защиты от газовой коррозии являются легирование металлов, создание защитных покрытий и замена агрессивной газовой среды. Для изготовления аппаратуры, подвергающейся действию коррозионно-активных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома — термохромирования. Для защиты используют и неметаллические покрытия, изготовленные из керамических и керамико-металлических (керметы) материалов. [c.687]

    Выбор жаростойкого силава обусловливается также характером и состя вом газовой среды. Так, хромистые и хромонпке-левые стали обладают хорошей стойкостью в окислительных средах, восстановительная же газовая среда действует на лих неблагоприятно. Особенно неблагоприятно влияют при высокнх температурах на стали, содержащие никель, сернистые соединения пнкел образует с серой сульфид, дающий с металлическим никелем эвтектику, обладающую низкой температурой плавления, В условиях действия сернистых соединений при высоких температурах, как было указано, пригодны стали, легированные алюминием, хромом и кремнием. [c.238]

    С повышением температуры довольно (Н1Л1.И0 возрастает скорость коррозии никеля н сплавов па его основе, а также сталей, в состав которых ои входит. Особенно опасно то, что окисление никеля протекает преимущественно по границам зерен. В результате реакции образуется легкоплавкая. эвтектика Ni—NiS, плавящаяся при температуре 625 С, поэтому разрупи ние металла часто происходит по границам зерен. При температурах >6ПГ С предпочтение следует отла-пать хромистым сталям. Лобавка алюминия в количестве 3—4% положительно влияет на жаростойкость сталей в среде 50 . Золото при высоких температурлх не подвергается воздействию газов, содержащих SO2. [c.844]

    К преждевременному износу футеровки приводят нарушения эксплуатации печи при кратковременных остановках материал из печи не вьп ружается, что вызывает перегрев отдельных участков кладки и корпуса в случае прекращения обогрева происходит быстрое охлаждение, что также приводит к разрушению участков кладки и сокращению сроков службы. Для защиты футеровки от износа находят применение металлические жаростойкие башмаки, броневые плиты и гильзы, отдельные царги которых приваривают к корпусу печи, и т. п. [c.143]

    Трубные подвески и кронштейны (рис. УП-14) могут быть закрытыми и открытыми. Закрытые подвески прочнее, но для смены их в случае прогара требуется демонтаж печных труб. Учитывая-высокую температуру в радиантной камере, подвески и кронштейны изготовляют из высоколегированных жаропрочных сталей. Для литых изделий, например, применяют С5 ль ЭИ316 (ЭИ319), обладающую жаростойкостью при температурах до 1000 °С в атмосфере сернистых топочных газов. Применяют также хромомарганцевоникелевые и хромомарганцевокремнистые стали. [c.219]

    Кобальт применяется главным образом в сплавах, которые используются в качестве жаропрочных и жаростойких материалов, для изготовления постоянных магнитов и режущих инструментов. Жаропрочный и жаростойкий сплав виталлиум содержит 65% Со, 28% Сг, 3% W и 4% Мо. Этот сплав сохраняет высокую прочность и не поддается коррозии при те.мпературах до 800—850 °С. Твердые сплавы стеллиты, содержащие 40—60% Со, 20—35% Сг, 5—20% W и 1—2% С, применяются для изготовления режущего инструмента. Кобальт входит также в состав керамикометаллических твердых сплавов — керметов (см. разд. 24.2). Соединения кобальта придают стеклу темно-синюю окраску (вследствие образования силиката кобальта). Такое стекло, истолченное в порошок, употребляется под названием шмальты или кобальта в качестве синей краски. Радиоактивный изотоп 2 Со применяется в медицине как источник 7-излучения ( кобальтовая пушка ). [c.528]

    КЕРМЕТЫ (керамикометаллические материалы) — гетерогенные компози)гии из металлов и неметаллов, сочетающие тугоплавкость, твердость, жаростойкость керамики с проводимостью, пластичностью, термостойкостью и другими ценными свойствами металлов. В качестве кс.мпозиций используются карбиды, бо-рнды, нитриды, силициды и другие неметаллические вещества, а также Ре, N1, Со, Сг, и, Мо, А1 и другие металлы. К. получают методами порошковой ме-та.члургин. [c.125]


Смотреть страницы где упоминается термин Жаростойкость также: [c.20]    [c.53]    [c.64]    [c.692]    [c.35]    [c.40]    [c.74]    [c.140]    [c.141]    [c.205]    [c.238]    [c.274]    [c.321]    [c.350]    [c.174]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жаростойкость



© 2025 chem21.info Реклама на сайте