Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибдена ударная вязкость

    В предьщущем разделе рассматривалась прочность сцепления покрытия (молибден) с основой (сталь) при установлении оптимальных режимов прокатки (оптимальная температура прокатки 950° С, степень обжатия 50%). Необходимо было выяснить, какими механическими свойствами обладает биметаллический композит. Особое внимание было уделено исследованию характера разрущения (определению ударной вязкости, температуры перехода в хрупкое состояние), тем более что этот вопрос в ранних работах по различным биметаллическим композициям практически вообще не изучался. [c.101]


Рис. 31. Кривые ударной вязкости и вязкой составляющей в изломе сплавов ванадия с молибденом (12) и вольфрамом (б) Рис. 31. Кривые <a href="/info/4995">ударной вязкости</a> и вязкой составляющей в изломе <a href="/info/20539">сплавов ванадия</a> с молибденом (12) и вольфрамом (б)
    По прочности биметалл занимает промежуточное положение между молибденом и сталью, а по пластичности превосходит Ст. 3 (необходимо отметить, что значение 5 = 27% для Ст. 3 все же несколько заниженное). Ударная вязкость биметалла сталь—молибден достаточно высока. Приведенные данные позволяют сделать вывод, что комплекс механических свойств биметалла сталь—молибден вполне удовлетворителен и этот материал можно использовать как конструкционный в химическом машиностроении. [c.101]

    Приведенные данные свидетельствуют о высокой конструктивной прочности биметалла сталь -молибден. Если молибден при комнатной температуре абсолютно хрупок (ударная вязкость 0), то ударная вязкость биметалла сталь—молибден достаточно высока (8—10 кгс м/см ). Возможность получения биметалла сталь—молибден с хорошими механическими свойствами и сопротивлением разрушению обеспечивает и возможность использования молибдена в качестве конструкционного материала в химическом машиностроении, так как при этом устраняются основные недостатки молибдена - низкие пластичность и вязкость. [c.104]

    При выборе материала для изготовления аппаратуры, применяемой для низкотемпературной ректификации, следует руководствоваться данными, приведенными в [144]. Физико-механические свойства металлов и их сплавов при пониженных температурах претерпевают существенные изменения. Для углеродистой стали в этих условиях особенно сильно снижается ударная вязкость, поэтому углеродистая сталь при низких температурах теряет способность сопротивляться динамическим нагрузкам. Никель, хром, марганец, молибден, ванадий способствуют повышению ударной вязкости стали при минусовых температурах. [c.205]

    Легирование молибденом расширяет температурный интервал образования немагнитной а-фазы (700—950 °С после выдержки 1 ч) и ускоряет процесс распада б-феррита по схеме б у + а, сопровождающийся снижением намагниченности насыщения, пластичности и ударной вязкости закаленной стали. [c.24]


    Никель, медь, ванадий, молибден, марганец и хром улучшают ударную вязкость при температуре ниже 0 . Углерод понижает ее. На свойства сталей при низкой температуре большое влияние [c.13]

    Стали, содержащие никель, медь, ванадий, молибден, марганец и хром, имеют повышенную ударную вязкость при температуре ниже О °С, содержащие углерод—пониженную. На поведении сталей при низкой температуре сказывается и термообработка. [c.16]

    Ф. применяют для легирования конструкционных (см. Конструкционная сталь), инструментальных сталей, жаропрочных сталей и нержавеющих сталей. Молибден способствует получению мелкокристаллической структуры, увеличивает прокаливаемость и ударную вязкость сталп. Марки и хим. состав Ф. приведены в ГОСТе 4759—69. [c.643]

    Некоторые стали в результате длительной работы при температурах выше 450 °С значительно теряют ударную вязкость при сохранении других механических свойств. Это явление, называемое тепловой хрупкостью, часто наблюдается у низколегированных сталей. Поэтому в них для стабилизации свойств добавляют молибден, вольфрам, ванадий. [c.16]

    Стали, содержащие никель, медь, ванадий, молибден, марганец и хром, имеют повышенную ударную вязкость при температуре ниже О °С, содер- [c.19]

    Металлы IV группы (титан, цирконий, гафний) деформируются при относительно низкой температуре, металлы V группы (ванадий, ниобий и тантал) наиболее пластичны и могут деформироваться даже при комнатной температуре. Металлы VI и VII групп (хром, молибден, вольфрам и рений) отличаются низкой пластичностью при комнатной температуре. Температура их горячей обработки давлением находится в пределах 1400—2000° С. Переход из хрупкого в пластичное состояние (ПО ударной вязкости) для вольфрама находится в пределах 400—500° С, хрома 150—200° С и молибдена 50—150° С. [c.242]

    Углеродистые и низколегированные стали. В указанных сталях при пониженных температурах наблюдается повышение временного сопротивления, предела текучести, твердости, теплопроводности и электропроводности стали, одновременно понижаются относительное удлинение, ударная вязкость, тепловое расширение и теплоемкость. Особенно сильно падает ударная вязкость. Углеродистая сталь при низких температурах теряет способность сопротивляться ударной нагрузке. Большое значение оказывает также термообработка стали и содержание в ней отдельных химических элементов. Повышенное содержание углерода понижает ударную вязкость. Никель, хром, марганец, молибден и ванадий повышают ударную вязкость при низких температурах. [c.379]

    Некоторые стали в результате длительной работы при температуре свыше 450 °С значительно теряют ударную вязкость, сохраняя все другие механические свойства. Это явление называется тепловой хрупкостью и предотвращается легированием стали молибденом, вольфрамом, ванадием. [c.275]

    Молибден содержится в сталях в количестве 0,15—0,8%. В специальных сталях содержание его увеличивается до 3%. Молибден добавляют в стали, работающие при высоких температурах и ударных нагрузках. Он способствует получению мелкозернистой структуры стали, увеличивает ее прочность и ударную вязкость, но затрудняет сварку, так как служит причиной образования трещин в шве и переходных зонах. При сварке молибден сильно окисляется и выгорает. [c.81]

    Молибден в термически не обработанной стали повышает твердость, пределы прочности и текучести, но пластические свойства — удлинение, поперечное сжатие и ударную вязкость — понижает. [c.161]

    Широко применяются стали на основе 11—13% хрома, дополнительно легированные никелем, молибденом, ванадием, вольфрамом, ниобием, что обеспечивает получение более высоких механических свойств при повышенных температурах. Стали этого типа отличаются достаточно высокими значениями ударной вязкости. [c.25]

    Никель, медь, ванадий, молибден, марганец и хром увеличивают ударную вязкость при температуре ниже 0°. Углерод понижает ее. [c.13]

    Химические элементы, входящие в состав стали, различно влияют на ее свойства. При повышенном содержании углерода увеличиваются временное сопротивление и предел текучести, но понижается ударная вязкость. Никель, хром, марганец, молибден, ванадий способствуют повышению ударной вязкости стали при температуре ниже 0 С. [c.417]

    Содержание отдельных химических элементов, входящих в состав стали, различно влияет на ее свойства. Повышение содержания углерода увеличивает временное сопротивление и предел текучести и понижает ударную вязкость. Никель, хром, марганец, молибден, ванадий повышают ударную вязкость сталей при темперагуре ниже 0°С. [c.313]

    Такие элементы, как никель, хром, вана-надий, молибден, повышают ударную вязкость сталей прн низких температурах. Особенно благоприятное действие на свойства сталей при низких температурах оказывает никель. Количество никеля, требуе-, мого для получения высокой ударной вязкости при низких температурах, зависит от содержания углерода в стали. Для малоуглеродистых сталей достаточно примерно 2% Ni , при содержании углерода выше 0,4% требуется добавка ие менее 3,5% N1.  [c.231]


    Черная металлургия, потребляющая около 90% ванадия, использует его легирующие, раскисляющие и карбидообразующие свойства. В специальных сортах сталей ванадий способствует образованию тонкой и равномерной структуры, делает сталь более плотной, повышает вязкость, предел упругости, предел прочности при растяжении и изгибе, расширяет интервал закалочных температур. Карбиды ванадия повышают твердость стали, увеличивают сопротивление истиранию и ударным нагрузкам. Ванадий является важной добавкой в инструментальной (до 2%) и конструкционной (до 0,2%) сталях. Развитие тяжелого и транспортного машиностроения обязано ванадиево-марганцовой стали, отличающейся большим сопротивлением удару и усталости. Ванадий используется для легирования сталей в комбинации с хромом, никелем, молибденом, вольфрамом. Ванадием легируют также чугун. В машиностроении применяют чугунное литье с присадкой 0,1—0,35% V для изготовления паровых цилиндров, поршневых колец и золотников паровых машин, прокатных валков, матриц для холодной штамповки. Ванадий является компонентом сплавов для постоянных магнитов. Для введения ванадия в сталь используют феррованадий — сплав с железом, содержащий 35—80% V. [c.477]

    Хладноломкость и сопротивление хрупкому разрушению оцениюются по кривым ударная вязкость—температура и доля вязкой составляющей в изломе-температура. Такие кривые для образцов биметалла сталь-молибден с двумя видами надреза — по двум слоям и ш> стали (см. шс. 97, надрезы / и III) - представлены на рис. 101 и 102. Здеа же дня сравнения показаны кривые для стандартных образцов молибдена и стали. [c.103]

    К. Е. Есипчук. ЛИТАЯ СТАЛЬ — сталь, используемая в литом состоянии без улучшения деформированием. Применяется с конца 19 в. Отличается от деформируемой стали большей физ. и хим. неоднородностью и, следовательно, более низкими пластическими св-вами и ударной вязкостью (табл.). Л. с. содержит, кроме железа и углерода (до 2%), сопутствующие примеси (серу, фосфор, кислород, азот и водород) и специально вводимые раскисляющие (нанример, марганец, кремний алюмний), микролеги-рующие (цирконий, титан, церий и др.) и легирующие (хром, никель, молибден и т. п.) элементы. Прочностные и пластические св-ва, а так- [c.704]

    В низкоуглеродистых сталях при. наличии молибдена после закалки всегда обнаруживается нерастворенный феррит, что отрицательно сказывается на эрозионной стойкости этих сталей. В то же время молибден способствует измельчению структуры перлита и уменьшает чувствительность стали к перегреву и росту зерна аустенита. Известно, что в отожженном состоянии низко-углеродистая сталь при небольшом содержании молибдена имеет более всокую прочность, чем сталь без молибдена. В термически необработанной стали после обработки давлением молибден увеличивает твердость, временное сопротивление, предел текучести, уменьшает относительное удлинение и ударную вязкость. Положительное влияние молибдена на механические свойства стали наиболее сильно проявляется после закалки и высокого отпуска- [c.170]

    Основной путь повышения водородоустойчивости стали заключается в выборе таких ее марок, которые содержат легирующие компоненты (хром, молибден, ванадий, титан, вольфрам, ниобий, цирконий) и образуют более стойкие карбиды, чем РезС. Длительное воздействие высокой температуры, давления и среды нарушает стабильность структуры металла Х5М. Так, по техническим условиям сталь Х5М, из которой изготовляют трубы, должна иметь структуру, содержащую феррит, пластинчатый перлит и небольшое количество структурно свободных" зернистых карбидов в виде отдельных включений. При длительном действии напряжения и температуры происходят сфероидизация цементита перлита и образование по границам зерен сплошной карбидной сетки, что проявляется в существенном снижении ударной вязкости, прочности и сопротивляемости материала ползучести. [c.105]

    Увеличение содержания хрома заметно повышает коррозионную стойкость хромистых низкоуглеродистых сталей в окислительных средах так если при содержании в стали 12% Сг (С — 0,002%, N — 0,08%, 2%—Мо) скорость коррозии в кипящей 65%-ной HNOs была равна 3,9 мм/год, то в стали с 17% Сг скорость коррозии составляет 0,44 мм/год, а при 30% Сг всего лишь 0,1 мм/год. С ростом содержания хрома в хромистых сталях возрастает также стойкость и к пнттинговой коррозии. Замечено, что молибден не оказывает сколько-нибудь заметного влияния на стойкость хромистых сталей в растворах азотной кислоты. С ростом содержания хрома в стали необходимо снижать концентрацию азота и особенно углерода. В этом случае хромистые стали будут обладать высокой ударной вязкостью. Такие стали обладают повышенной стойкостью против щелевой и язвенной коррозии, а также против коррозии под напряжением и в окислительных средах. При более высоком содержании углерода и азота повышения ударной вязкости можно добиться присадкой алюминия и молибдена. Алюминий связывает азот и уменьшает потери массы в азотной кислоте в 10 раз. Ферритные стали с низким содержанием углерода и азота более стойки к коррозии под напряжением, чем аустенитные стали типа 18 Сг-10 Ni, но подвержены межкристаллитной коррозии после нагрева при 475°С. Очистка сталей от примесей внедрения повышает также и стойкость стали к межкристаллитной коррозии. Была исследована коррозия низкоуглеродистых хромистых сталей (24—28% Сг, [c.78]

    Многие /-элементы ГУ-УП групп используются как легирующие добавки для улучшения качества сталей. В состав сталей их обычно вводят в виде ферросплавов (сплавов с железом), например, феррохрома, ферромарганца, ферротитана, феррованадия и др. Легирование ими придает сталям ценные качества, например коррозионную стойкость (хром, марганец, титан), твердость и ударная вязкость (цирконий), твердость и пластичность (титан), прочность, ударная вязкость и износостойкость (ванадий), твердость и износостойкость (вольфрам), твердость и ударная вязкость (марганец), жаропрочность и коррозионную стойкость (молибден, ниобий). Марганец используется как раскислитель стали. Все более широкое применение получают эти металлы и их сплавы, как конструкционные, инструментальные и другие материалы. Так, титан и его сплавы, характеризуемые легкостью, коррозионной устойчивостью и жаропрочностью, применяются в авиастроении, космической технике, судостроении, химической промышленности и медицине. В атомных реакторах используются цирконий (конструкционный материал, отражающий нейтроны), гафний (поглотитель нейтронов), ванадий, ниобий и тантал. Вследствие высокой химической стойкости тантал, ниобий, вольфрам и молибден служат конструкционными материалами аппаратов химической промышленности. Вольфрам, молибден и рений, как тугоплавкие металлы, используются для изготовления катодов электровакуумных приборов и нитей накаливания термопар и в плазмотронах. Вместе с тем при высоких температурах вольфрам и молибден окисляются кислородом, причем образующиеся при высокой температуре оксиды не защищают эти металлы от коррозии, поэтому на воздухе они не жаростойки. Вольфрам служит основой сверхтвердых сплавов. Хромовое покрьггие придает изделиям декоративный вид, повышает твердость и износостойкость. [c.373]

    Стали ЗОХМА и 25Х2МФА, содержащие молибден (0,2—0,3%) и ванадий (особенно 25Х2МФА), обладают значительно большей теплоустойчивостью, не склонны к снижению ударной вязкости при длительном пребывании при повышенных температурах, особенно ценны как материал для крепежа при повышенных температурах, их широко применяют не только на нефтеперерабатывающих и нефтехимических заводах, но и в других отраслях промышленности. [c.71]

    Легирование сталей такими элементами, как никель, хром, молибден и марганец, повышает ударную вязкость и снижает порог хладоломкости. Наибольший эффект достигается при добавке никеля. Сталь марки 06НЗ (3,5—4% N1) после нормализации может быть использована как конструкционная до температуры 115 К- [c.272]

    Такие элементы, как никель, хром, ванадий, молибден, повышают ударную вязкость сталей при низких температурах. Особенно благоприятное влияние оказывает никель, количество которого, необходимое для получения высокой ударной вязкости при низких температурах, является функцией содержания углерода в стали. Для малоуглеродистых сталей достаточнв 2% при содержании С выше 0,4 [c.194]


Смотреть страницы где упоминается термин Молибдена ударная вязкость: [c.79]    [c.63]    [c.624]    [c.649]    [c.127]    [c.598]    [c.373]    [c.34]    [c.232]    [c.388]    [c.388]    [c.395]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Ударная вязкость



© 2025 chem21.info Реклама на сайте