Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов г напряжение

    На рис. 6.7 представлены графики зависимости степени очистки газов, напряжения, тока и мощности, потребляемой четвертым полем электрофильтра, от количества вводимого в газы аммиака. Из табл. 6.5 и рис. 6.7 следует, что с увеличением ввода в очищаемые газы аммиака примерно от 8 до 25 млн. объемн. долей (от 0,0008 до 0,0025 объемн. %) эффективность электрофильтра повышается. [c.176]


    В производстве ацетилена методом электрокрекинга метана и на стадии очистки газа от сажи используются аппараты, работающие под напряжением до 8 кв (ртутные выпрямители, повышающие трансформаторы, реакторы для электрокрекинга, электрофильтры), а также имеются кабели и щины высокого напряжения. На стадии компримирования применяются электродвигатели, питаемые током на напряжение до 6 кв. Эти аппараты и устройства могут быть источником поражения обслуживающего персонала электрическим током высокого напряжения. [c.138]

    Сила тока обычно составляет от 0,05 до 0,50 мА на один метр длины коронирующего электрода. Средняя напряженность электрического поля составляет 4—6 кВ/см. Прн этих параметрах работы фильтра обеспечивается практически полная очистка газа от взвешенных в нем частиц. Сопротивление электрофильтров составляет 50—200 Па, т. е. значительно меньше, чем циклонов и тканевых фильтров. [c.353]

    Процесс отделения пыли в электрофильтре зависит от ее проводимости. Если пыль не проводит тока, осевший на электродах слой пыли отталкивает приближающиеся одноименно заряженные частицы и при напряжении в слое, превышающем критическое, у осадительного электрода появляется свечение — обратная корона . Это явление значительно ухудшает процесс очистки газа. [c.340]

    Наконец, аэрозоли можно разрушать действием электрического поля высокого напряжения. Этот метод, разработанный Коттрелем, используется в промышленности для очистки газов от пыли, разрушения дыма перед его выбросом в атмосферу и других целей. Поскольку частицы аэрозоля обычно слабо заряжены или практически [c.363]

    Аэрозоль гораздо легче электризовать с помощью коронного разряда, нежели контактным путем. После этого можно заставить частицы перемещаться к коллекторному электроду под действием внешнего приложенного поля умеренной напряженности. Электростатическое осаждение является одним из наиболее часто используемых методов очистки газов. Этот метод применяется на тепловых электростанциях, ежи- [c.300]

    Электрическая очистка газов путем осаждения взвешенных в газе частиц в электрическом поле высокого напряжения. [c.169]

    Хотя электрофильтры работают при высоком напряжении постоянного тока (40-75 кВ), расход электроэнергии в них невелик и обычно составляет 0,2-0,3 кВт ч на 1000 м газа. Гидравлическое сопротивление электрофильтров меньше, чем большинства других аппаратов газоочистки, и составляет 150-200 Па. Степень очистки газа от пыли достигает 95-99%. [c.230]


    В электрофильтрах между отрицательно заряженным коронирующим электродом и положительно заряженным осадительным электродом создается неоднородное электрическое поле (рис. 86). При достижении некоторой критической величины напряженности электрического поля (кВ/м) в потоке возникает лавинная ионизация газа, на коронирующем электроде появляется корона с голубовато-фиолетовым свечением. При этом газ образует ионы, заряженные положительно и отрицательно, и свободные электроны, движущиеся к электродам с противоположным знаком Поскольку отрицательно заряженные ионы и электроны более подвижны, то соприкасаясь с ионами и электронами, твердые частицы и взвешенные в газе капельки приобретают в большей части отрицательный заряд. Заряженные частицы движутся к электродам и оседают на их поверхности. Осевшие твердые частицы периодическим встряхиванием электродов удаляют из аппарата, капли жидкости стекают. Коронирующие электроды обычно выполняют из проволоки, осадительные — из труб (у трубчатых электрофильтров) и пластин (у пластинчатых). Электрофильтры работают на постоянном токе при напряжении 40 — 75 кВ. Расход электроэнергии на очистку газа в электрофильтрах сравнительно невелик — в среднем он составляет 0,5 —0,8 кВт ч на 1000 м газа. Электрофильтры применяют при больших объемах очищаемого газа и когда отсутствует опасность пожара или взрыва. [c.217]

    При использовании в качестве движущей силы электрических сил также удается существенно увеличить скорость осаждения частиц. Обычно подобные гфоцессы реализуются в электрофильтрах при очистке газов. Под действием постоянного напряжения, подаваемого на коронирующий и осадительный электроды (см. рис. 3.2.4.7), происходит ионизация воздуха и накопление частицами отрицательного заряда от свободных электронов. Под действием электрической силы частицы осаждаются на осадительных электродах. [c.20]

    Средняя степень очистки газа от масел по результатам семи опытов составила 70%. При отсутствии напряжения убыль масел в газе составляла 7— 13% вследствие снижения скорости потока газа при прохождении через электрофильтр. [c.26]

    Для дальнейшей очистки газа от маслянистых примесей эффективно использование электрофильтров. Проведенные исследования работы электрофильтра типа С-180 на Московском коксогазовом заводе показали, что при напряжении 40 кВ и скорости газа в поле электрофильтра 1,8—1,9 м/с степень очистки газа от масел составила в среднем 70%- При отсутствии напряжения убыль масел в газе не превышала 13%. [c.25]

    Ввиду сложной гидродинамической обстановки в циклоне точно рассчитать процесс очистки газа в нем чрезвычайно сложно. Обычно исходят из того, что время пребывания частицы в аппарате должно превышать время, необходимое для достижения частицей внутренней поверхности циклона. Иногда для такой оценки прибегают к допущению о постоянстве угловой скорости потока газа по сечению. Тогда время осаждения частицы определяется по формуле (III. 67), в которой Дб —диаметр корпуса, а Дв —диаметр выхлопной трубы. Производительность циклона определяется по формуле (III. 68), в которой Fp — рабочий объем циклона. Другой подход заключается в том, что вихревой поток, в котором происходит сепарация частиц, рассматривается как вихревой шнур. Как было показано в гл. II, напряжение вихревого шнура, равное произведению угловой скорости на площадь поперечного сечения, — величина постоянная. Поскольку площадь поперечного сечения цилиндрического вихря пропорциональна квадрату его радиуса, то [c.238]

    Осаждение мелких частиц происходит при ламинарном их обтекании газом, для которого коэффициент сопротивления обратно пропорционален величине критерия Рейнольдса = 24/Ке. Подстановка в уравнение движения частицы дает = кеЕй/ 12 1). Следовательно, при электроосаждении скорость осаждения пропорциональна первой степени диаметра частицы, а не квадрату ее диаметра, как это было при ламинарном гравитационном осаждении (см. формулу (2.5)). Отсюда следует, что по мере уменьшения размеров частиц скорость их гравитационного осаждения уменьшается значительно быстрее, чем при электроосаждении. Следовательно, мелкие частицы (й < 10 мкм) предпочтительнее осаждать в электростатическом поле. Однако при выборе способа очистки газов от пыли следует иметь в виду относительно высокие капитальные затраты при организации электроочистки, что обусловлено высокой стоимостью вспомогательного оборудования (высоковольтные трансформатор и выпрямитель переменного напряжения). [c.204]

    Электрофильтры. Циклоны улавливают основную массу частиц катализатора, увлеченных из регенератора дымовыми газами. Для очистки газов от мелких частиц катализатора и уменьшения его потерь применяют электрофильтры (рис. 37). В электрическом поле электрофильтров катализаторная пыль осаждается, затем ее собирают в бункеры и возвращают в регенератор. Электрическое поле создается между коронирую-щими электродами 12 и осадительными электродами 8. Коронирующие электроды подсоединены к отрицательному полюсу выпрямителя высокого напряжения, дающему пульсирующий ток. Осадительные электроды заземлены. [c.113]


    Осадительные электроды в смоляных электрофильтрах чаще всего выполняются в виде вертикально установленных труб, через которые пропускается очищаемый газ. При прохождении электрического тока высокого напряжения (50—70 кв) череа коронирующие электроды, подвешенные в виде проволок внутри труб, мельчайшие частички смолы, взвешенные в газе, осаждаются на внутренних стенках труб и стекают вниз. Благодаря хорошему распределению газа по сечению электрофильтра степень очистки газа от смолы в трубчатых электрофильтрах выше, чем в других конструкциях электроосадителей. [c.316]

    Для очистки газов от пылей разработаны конструкции аппаратов производительностью от 5 до 60 тыс. м ч. При начальной запыленности 5—100 г/м , температуре от 353 до 523 К гидравлическое сопротивление аппарата составляет 600—800 Па, а эффективность очистки 95—99 %- Расход воды на регенерацию магнитной ткани 0,1 м на 1000 м газа. Элементы магнитной фильтрующей ткани — постоянные магниты с напряженностью 14-10 А/м. Без использования магнитной обработки газов эффективность пылеулавливания при тех же условиях не превышала 5 %. Рациональная область применения магнитных фильтров очистки газов с концентрацией пыли от 0,1 до 200 г/м . [c.483]

    При отрицательной полярности тока, подводимого к корони-рующим электродам, степень очистки газа увеличивается, так как в этом случае допустимо более высокое напряжение без возникновения искрового разряда между электродами. [c.340]

    При очистке газов от кислых компонентов наряду с общей коррозией происходит также коррозионное растрескивание. При этом коррозионному растрескиванию подвержены сравнительно малопрочные стали с пределом текучести ниже критического значения, которые обычно не поддаются растрескиванию. Это несоответствие объясняется более агрессивными условиями, возникающими в парогазовой фазе в связи с образованием на поверхности металла пленки влаги. Из-за малой толщины этой пленки создаются условия более легкого, чем в жидкой фазе, доступа сероводорода (стимулятора наводороживания и растрескивания) к поверхности металла, и в то же время сохраняется электролитический характер среды. Коррозионному растрескиванию подвержены абсорберы, десорберы, теплообменники, подогреватели, трубопроводы. Как правило, коррозионное растрескивание возникает вблизи сварных швов и трещины направлены вдоль сварных швов. Для предотвращения коррозионного растрескивания рекомендуется применять термическую обработку (обжиг) для снятия остаточных напряжений. Наличие хлоридов в сероводородном растворе увеличивает склонность стали к коррозионному растрескиванию. Высокую стойкость к коррозионному растрескиванию проявили стали с 3% молибдена типа Х17Н13МЗТ. [c.176]

    Характер процесса электрической очистки газов (зарядка, движение и осаждение взвешенных частиц) определяется в основном напряженностью электрического поля в межэлек-тродном пространстве электрофильтра, которая, в свою очередь, зависит от размеров электродов, расстояния между ними, приложенного к электродам, напряжения и силы тока, потребляемого электрофильтром. [c.19]

    Пример 4. Рассчитать степень очистки газов в двухпольном горизонтальном пластинчатом электрофильтре с площадью сечения Р = 7,5 м при диаметре коронирующих электродов 0 = 2,5-10 м, расстоянии между ними й = 0.24 у и их активной длине I = 924 м. Общая площадь рабочей поверхности электрофильтра 5 = 242 м2, число осадительных электродов п = 16, расстояние между плоскостями осадительных и коронирующих электродов Н 1,1 ). м. Су.м.марная длина электрического поля 1 = 4,8. м, срсдмес напряжение 0 с ) = 46 кВ. [c.26]

    Степень очистки газа в электрофильтре в значительной степени зависит от проводимости пыли. Если частицы хорошо проводят ток, а силы адгезии (сцепления) ненелики, то заряд отдается мгновенно, а сама частица получает заряд электрода. Возникает кулоновая сила отталкивания, и частица вновь может попасть в газовый поток. Это приводит к увеличению уноса пыли из электрофильтра и понижению степени очистки. Если пыль плохо проводит ток, то она прижимается силой поля к электроду и образует на нем плотный слой отрицательно заряженных частиц, который отталкивает приближающиеся частицы того же знака, т. е. противодействует основному электрическому полю. Напряжение в порах слоя осевшей пыли может превысить критическое и вызывать коронирование газа у осадительного электрода — обратную корону . Это явление значительно снижает эффективность очистки газа. [c.240]

    Устройство электрофильтров. Установка для электрической очистки газов включает обычно электрофильтр и преобразовательную подстанцию с соответствующей аппаратурой. Для питания установки выпрямленным током высокого напряжения используютэлектрическиеагрегаты(рис.У-51), состоящие из регулятора напряження /, трансформатора 2, повышающего напряжение переменного тока с 380/220 в до 100 кв, и высоковольтного выпрямителя 3. После выпрямителей ток подводится к электродам 4 я 5 электрофильтра 6. Корпус электрофильтра обычно имеет прямоугольную [c.240]

    В электрическом поле высокого напряжения частицы аэрозолей подвергаются электрофорезу, причем, достигнув электродов, они теряют свой заряд и осаждаются. Электрофорез аэрозолей находит ряд важнейших практических применений для очистки газов от взвешенных в них твердых и л идких частиц. В одних случаях такая очистка бывает необходима для возможности проведения производственных процессов (например, очистка SOo при контактном получении H2SO4), в других —при ее помощи улавливают различные уносимые отходящими газами в виде пыли ценные продукты. Наконец, электрофорез аэрозолей очень важен с санитарно-гигиенической точки зрения, так как позволяет очищать выпускаемые на воздух газы от вредных отходов производства." [c.333]

    Очистка газов от твердых или жидких частиц в электрофильтрах осуществляется под действием электростатических сил. Па рис. 76 представлена принципиальная электрическая схема электрического фильтра. Запыленный газ пропускают через электрическое поле постоянного тока. Коронирующие электроды 3 изолированы от земли, й к ним подведен постоянный ток высокого напряжения осадительные электроды 2 заземлены и подключены к полояштельному полюсу. В качестве осадительных электродов используются цилиндрические трубы и профилированные пластины, в качестве коронирующих-тонкая проволока. Под действием электрического поля постоянного тока, возникающего мезкду электродами, твердые ли жидкие частицы, проходящие через трубы газа, получают отрицательный заря д и движутся ь сторону осадительного электрода, осаждаются на нем и раз ряжаются. [c.221]

    Электрическая очистка. Электрофильтры, Е римепнемые для очистки газа, бывают трубчатые и пластинчатые. Принципиальная схема электрофильтра показана па рис. ЫО. Как видно из рнсуика, газ пропускают между двумя электродами, из, которых один заряжен положительно и называется осадительным. Осадительные электроды заземляют. Другой заряжен отрица- телыю и называется коронирующнм электродом. Электрофильтр питается постоянным током -ТГ высокого напряжения 60—80 тыс. В. [c.30]

    Неотъемлемой частью установок электрической очистки газов явтяются агрегаты питания снабжающие эчеьтрофильтры выпрямленным током высокого напряжения (60—80 кВ) [c.231]

    Степень очистки газов в электрофильтре во многом зависит от электропроводности частиц ныли и их адгезионной способности Если частицы хорошо проводят ток, а силы адгезии невелики, то частица, достигнув осадительного электрода, отдает ему свой заряд, получает заряд электрода и вновь попадает в газовый поток, что снижает степень очистки. Если пыль плохо проводит ток, а силы адгезии существенны, то на электроде образуется плотный слой отрицательно заряженных частиц, противодействующий основному электрическому полю. При большой толщине этого слоя напряжение в его порах может превысить критическое и вызвать корониро-вание газа у осадительного электрода - обратную корону . Это [c.227]

    Степень очистки газов от дисперсных примесей в электрофильтрах зависит практически от всех параметров газов и взвешенных частиц, от конструктивных характеристик аппаратов, режимов эксплуатации и ряда других факторов. Из свойств дисперсных частиц наиболее очевидно проявляется влияние УЭС (см.раздел 1,2,10), оптимальное значение которго находится в пределах 10 ... 10 Омм. Низкоомные частицы легко заряжаются в электрическом поле, однако с приближением к электроду с противополжным знаком перезаряжаются, и между ними начинают действовать силы отталкивания. Это служит причиной вторичного уноса низкоомных частиц, даже успевших осесть на электрод. Еще менее благоприятные процессы возникают при очистке высокоомных пылей. Оседая на электроды, они образуют неоднородный электроизоляционный слой. По месту наиболее слабой изоляции напряженность поля становится максимальной. Это способствует образованию короны с противоположным знаком ( обратной короны ), резко ухудшающей работу электрофильтра. [c.268]

    Электрофильтры ЭГ-КЭН предназначены для обеспыливания газов, содержащих высоюомные дисперсные частицы с УЭС в пределах 10 10 Ом м. Степень очистки газов в них может достигать 99,75%. Электрофильтры изготавливаются двух типоразмеров с маркировкой ЭГ-2-3-3,8-17-0,4 КЭН и ЭГ-2-4-2,5-77-05 КЭН, которая означает электрофильтр горизонтальный первое число после букв обозначает типоразмерный (габаритный) номер, второе - количество полей, третье - активную длину поля, м, четвертое - площадь активного сечения, м пятое - модификацию аббревиатура КЭН означает комбинированные электроды НИИОГаз . Аппараты имеют высоту электродов 6000 и 7150 мм, ширину 3200 и 11810 мм, производительность при скорости газов в 1 м/ с - 16,7 и 77,8 м с, допустимые пределы температур 330 и 250 С соответственно. Гидравлическое сопротивление электрофильтров составляет 200 Па, максимально допустимое разрежение - 5 кПа. Расстояние между соседними осадительными электродами 300 мм. Коронирующие электроды набираются из профилированных лент и создают электрическое поле со сложным характером изменения напряженности. Уловленная пыль удаляется механическим встряхиванием электродов. [c.277]

    Можно сделать вывод о целесообразности электрофильтрации выбросов СРКА, если при эксплуатации удастся поддерживать параметры процесса очистки (пылеемкость, температуру газов, напряжение на электродах и т.д.) на уровне расчетных. [c.295]

    В зависимости от вида улавливаемых частиц и способа их удаления электрофильтры делятся на сухие и мокрые. В сухих электрофильтрах для очистки поверхности электродов от пыли используются механизмы встряхивания ударно-молоткового типа. Пыль из бункеров выводится в сухом виде. В мокрых электрофильтрах поверхность электродов очищают от пыли промывкой водой. В электрофильтрах, предназначенных для очистки газов от туманов кислот и смол, уловленные частицы с поверхности электродов удаляются самотеком или периодической промывкой слабой кислотой. На время промывки электродов с электрофильтров снимается высокое напряжение. Равномерное газорас- [c.219]

    Коррозия на дей твуюш их установках очистки газа. Абсорберы обычно не корродируют, хотя и имеются сообщения о случаях коррозионного растрескивания под напряжением в абсорберах на ряде установок очистки растворами этаноламина. Отжиг для снятия остаточных напряжений предотвращает коррозию этого типа [9]. [c.51]

    Для того чтобы обеспечить достаточно эффективное образование короны, которая внешне проявляется в особом жужжащем звуке, голубоватом свечении, необходимо подвести к коронирую-щей системе напряжение до 60—80 тыс. в. Сила тока при этом бывает небольшая, около 40—80 ма. Общий расход электроэнергии при электрической очистке газа электрофильтрами небольшой и равен обычно 0,5—1 квт-ч на 1000 м газа. Газ очищается от смолы удовлетворительно уже при удельной силе тока на 1 пог. м коронирующего электрода около 0,02 ма. В соответствии с этим необходимо увеличивать напряжение, подаваемое на ко-ронирующую систему, если увеличивается нагрузка электрофильтра по газу. [c.124]

    Турбодетандер представляет собой сложную машину, работающую в напряженных условиях. Если температура дымовых газов превышает допустимую температуру эксплуатации, возможно предварительное охлаждение газов путем впрыска химически очищенной водьт Запыленность газов оказывает также большое влияние на конструкцию турбодетандера и условия его эксплуатации. Снижение запыленности достигается применением третьей ступени (после двух ступеней циклонов) очистки газов. Эрозионная стойкость турбодетандера достигается применением специальных покрытий лопаток, например карбидом вольфрама. Кроме того, конструкция турбодетандера предусматривает возможность быстрой замены изнашиваемых деталей, которую проводят раз в 3-4 года. Износ деталей вызывает потерю 10-15% мощности. [c.112]

    Нередко даже самые совершенные электрофильтры не могут обеспечить номинальную степень очистки газов из-за недостаточно квалифицированных монтажа и эксплуатации [78]. Например, при децентровке электродов эффективность пылеуловителя уменьшается на 1,4%, а при снижении питающего напряжения всего на 5% степень очистки падает с 99,5 до 98,9%. В этих условиях применение в установках электрофильтрационной очистки микропроцессоров позволяет не только оптимизировать процесс пылеулавливания, но и сократить энергозатраты на 30—70% без снижения КПД аппаратуры. [c.194]

    На установках очистки газа растворами аминов большое вннмапие следует уделять вопросам коррозии. После 10 лет эксплуатации в абсорбционной секции установки очистки сернистого газа в Уорленде не обнаружено никаких признаков коррозии. Все аппараты, предназначенные для работы с сернистым газом, были подвергнуты радиографическому контролю и отжигу для снятия напряжений. При ежегодном осмотре этих аппаратов проверяется состояние сва[)ных швов, патрубков, опорных решеток иод насадку и тех зон колонны, где происходят колебания уровня жидкости. Не возникло никаких осложнений в результате коррозии и в низкотемпературных секциях системы кислого газа. Однако серьезные трудности вызывают коррозия и эрозия в трубопрово дах горячего кислого газа. Так, под действием влажной струи горячего кислого газа (127°С 1,4 ат) происходила интенсивная эрозия колена диаметром 254 мм из трубы по стандарту 40 на выходе паров И )егенератора. Для устранения этой эрозии вместо колена был установлен тройник такого же диаметра из монель-металла в результате этого изменения конденсат, выделяющийся при охлаждении кислого газа и ранее вызывавший эрозию колена, возвращался в кипятильник (рис. 6). [c.382]


Смотреть страницы где упоминается термин Очистка газов г напряжение: [c.32]    [c.199]    [c.82]    [c.13]    [c.83]    [c.138]    [c.42]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.697 ]




ПОИСК







© 2025 chem21.info Реклама на сайте