Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетеротрофные растения

    В зависимости от того, в какой хим. форме живые организмы способны усваивать из внеш. среды углерод, они делятся на две большие группы-автотрофы и гетеро-трофы. Для первых осн. источником углерода служит СО2, для вторых-разл. орг. соединения. Автотрофное питание осуществляют зеленые растения и фотосинтезирующие бактерии, гетеротрофное-животные и грибы. У микроорганизмов встречаются тот и др. тшш питания. О.в. автотрофных организмов является по преимуществу анаболическим, гетеротрофных-катаболическим. Основу пластического обмена составляет органический обмен. Традиционное разделение его на углеводный обмен, липидный обмен и обмен азотсодержащих соединений обусловлено большой распространенностью в живой природе соед. этих классов и различием их свойств. [c.310]


    Некоторые виды микроорганизмов способны переключаться с автотрофного типа питания на гетеротрофный, и наоборот. Например, эвглена зеленая питается на свету как растение, т. е. ведет автотрофный образ жизни, а в темноте энергично поглощает органические вещества, т. е. существует как гетеротрофный организм. [c.59]

    Автотрофные и гетеротрофные процессы обьгано разделены в пространстве. Первые активно протекают в верхних слоях, где доступен солнечный свет, а вторые - интенсивнее в нижних слоях (почвах, донных отложениях). Кроме того, эти процессы разделены и во времени, поскольку существует временной разрыв между образованием органических веществ растениями и разложением их консументами. Паиример, лишь небольшая часть зелёной массы леса немедленно используется животными и насекомыми. Большая часть образованного материала (листья, древесина, семена, корневища и др.) не потребляется сразу, а переходит в почву или в донные осадки. Может пройти определённый промежуток времени прежде чем накопленное органическое вещество будет использовано. [c.10]

    Жизненный цикл. Этот цикл тесно связан с углеродом атмосферы и гидросферы. В атмосфере источниками углекислого газа служат дыхание гетеротрофных организмов, гниение и горение органических веществ, газообмен с гидросферой, выветривание пород, вулканизм. Запас углерода атмосферы расходуется в основном на фотосинтез в зеленых растениях суши и на газообмен с гидросферой. В гидросфере посредством фотосинтеза, осуществляющегося водными растениями, диоксид углерода попадает в растительное вещество, на базе которого развивается животный мир гидросферы.-В то же время углекислый газ выделяется в воду при дыхании гетеротрофов. [c.207]

    Микроорганизмы, которые способны сами синтезировать органические вещества из СО2 в процессе хемо- или фотосинтеза, называют автотрофными, а микроорганизмы, для существования которых необходимы уже готовые органические вещества,— гетеротрофными. В круговороте углерода в природе принимают участие как авто-, так и гетеротрофные организмы, причем существует определенное равновесие между фиксирующими СО2 фотосинтезирующими организмами (главным образом растениями) и микроорганизмами, разрушающими органические соединения. Установлено, что ежегодно в процессе фотосинтеза из атмосферы потребляется примерно 60 млрд. т СО2 и такое же количество СО2 ежегодно образуется в процессах микробиологической минерализации. [c.9]

    Тот факт, что гетеротрофные организмы неполностью используют свободную энергию, поглощаемую с растительной пищей, а частично выбрасывают ее с продуктами выделения, пригодными вновь для питания растений, выходит за рамки данного обсуждения, [c.471]


    Плесень представляет собой нитеобразные грибы, напоминающие по своей структуре высшие растения и образующие разветвленные нитевидные колонии. Эти грибы — нефотосинтезирующие, многоклеточные, гетеротрофные, аэробные, они лучше всего растут в кислых растворах с высоким содержанием сахара. Колонии их можно часто видеть на поверхности гниющих продуктов. Из-за своей нитевидной структуры плесень в активном иле молсет привести к плохому оседанию хлопьев, что мешает гравитационной сепарации его из очищенных сточных вод. Нежелательный рост грибов часто наблюдается при очистке кислых промышленных сточных вод с высоким содержанием сахара. [c.53]

    Преобладание полисахаридов среди продуктов ассимиляции зеленых растений обусловливает большую роль сахаров в питании всех живых организмов, нуждающихся в органической пище. Глюкоза и другие сахара в форме полимеров-это количественно преобладающие субстраты для процессов минерализации в природе в виде мономеров они служат предпочитаемыми питательными веществами для большинства гетеротрофных микроорганизмов. [c.14]

    Термины гетеротрофный и автотрофный , введенные для определения типов питания животных и растений, недостаточны для того, чтобы охарактеризовать все многообразие способов питания микроорганизмов. Поэтому для микроорганизмов были предложены новые термины, указывающие на источник энергии, донор водорода (электронов) и источник углерода. [c.184]

    Бактерии — мельчайшие одноклеточные организмы, относящиеся к низшим растениям. Почти все бактерии, так же как и грибы, относятся к гетеротрофным организмам, они лишены хлорофилла и питаются готовыми органическими веществами. [c.39]

    Большинство бактерий — гетеротрофные организмы. В отличие от автотрофных зеленых растений, они не в состоянии синтезировать органическое вещество непосредственно из двуокиси углерода и нуждаются в питании готовыми органическими веществами, так же как животные и грибы. Они живут либо в средах, содержащих продукты органического распада, либо паразитируя в организмах хозяев. [c.103]

    Развитие фотосинтетических аппаратов знаменовало собой начало совершенно нового периода в эволюции форм жизни на Земле. Появились новые виды живых существ, резко изменились условия питания, состав атмосферы — началось обогащение ее кислородом. Синтез органических веществ в растениях и водорослях обеспечил пищей гетеротрофные организмы из остатков растений под влиянием химических и биологических факторов начали образовываться массы ископаемых углей. Накопления таких отложений, как нефть, известняки и сланцы,— это тоже результат фотосинтетической деятельности. [c.196]

    Все другие растения, в том числе не имеющие хлорофилла растения-паразиты (повилика, заразиха и др.), и все бесцветные микроорганизмы (бактерии, грибы и др.), как и все животные, не способны заново образовывать органические вещества из минеральных и могут расти и развиваться, только потребляя готовые растительные или животные органические вещества. Такие организмы называются гетеротрофными (питающимися за счет других организмов). Им необходим постоянный приток углеводов, белков II жиров, то есть отдельных составных частей других клеток и тканей. [c.9]

Рис. 13-1. Круговорот двуокиси углерода и круговорот кислорода между двумя областями биосферы Земли-фотосинтезирующей и гетеротрофной. Масштабы этого круговорота огромны. За год в биосфере совершает круговорот свыше 3,5 10 т углерода. Баланс между образоваю1ем и потреблеш1ем СОг-один из важных факторов, определяющих климат на Земле. Содержание СО2 в атмосфере возросло за последние 100 лет примерно на 25% из-за все более усиливающегося сжигания угля и нефти. Некоторые ученые утверждают, что дальнейшее увеличение количества атмосферной СОг повлечет за собой повышение средней температуры атмосферы ( парниковый эффект ) не все, однако, согласны с этим, поскольку трудно определить точно количества СОг, образующейся и вовлекаемой в повторные циклы в биосфере, а также поглощаемой океанами. Для того чтобы вся атмосферная СОг была пропущена через растения, требуется около 300 лет. Рис. 13-1. Круговорот двуокиси углерода и <a href="/info/566759">круговорот кислорода</a> между двумя <a href="/info/1330306">областями биосферы</a> Земли-фотосинтезирующей и гетеротрофной. Масштабы этого круговорота огромны. За год в биосфере совершает круговорот свыше 3,5 10 т углерода. Баланс <a href="/info/312988">между образоваю</a>1ем и потреблеш1ем СОг-один из важных факторов, определяющих климат на Земле. Содержание СО2 в атмосфере возросло за последние 100 лет примерно на 25% из-за все более усиливающегося сжигания угля и нефти. <a href="/info/1600510">Некоторые ученые</a> утверждают, что дальнейшее <a href="/info/653941">увеличение количества</a> атмосферной СОг повлечет за <a href="/info/1795776">собой</a> повышение <a href="/info/14207">средней температуры</a> атмосферы ( <a href="/info/175579">парниковый эффект</a> ) не все, однако, согласны с этим, поскольку трудно <a href="/info/675970">определить точно</a> количества СОг, образующейся и вовлекаемой в <a href="/info/1901744">повторные циклы</a> в биосфере, а также поглощаемой океанами. Для того чтобы вся атмосферная СОг <a href="/info/1330306">была</a> пропущена <a href="/info/1863083">через растения</a>, требуется около 300 лет.
    В промышленных сточных водах обитает бесчисленное множество микроорганизмов, среди которых преобладают бактерии. А если учесть, что очень часто для более эффективной биологической очистки промышленные стоки смешивают с бытовыми, богатыми природными органическими веществами (водорастворимыми белками и углеводами), то станет ясно, что в таких сточных водах могут развиваться почти все ныне известные гетеротрофные бактерии, а также некоторые (возможно и все) бактерии, способные к хемоавтотрофному метаболизму. Помимо истинных бактерий — эубактерий — в промышленных сточных водах находятся миксобактерии, актиномицеты, синезеленые водоросли, микоплазмы и другие микроорганизмы вирусы, грибы, зеленые водоросли и представители животного мира — простейшие. Бактериальная клетка отличается наиболее универсальным набором ферментных систем, способных охватить множество разнообразных химических реакций, часто очень полезных для народного хозяйства и необходимых для охраны окружающей среды от угрозы гибели или частичного отравления ее химическими веществами, которые накапливаются в результате промышленной деятельности. Микроорганизмы — лучшие санитары Земли Многие микроорганизмы используются в промышленности и сельском хозяйстве как продуценты спиртов, кислот, биологически активных веществ и антибиотиков. В сельском хозяйстве используются азотфиксаторы и энтомопатогенные микробы. Однако наряду с этим множество микробов не только бесполезны, но и весьма вредны, образуя токсины либо паразитируя в организме человека, животных и растений это патогенные (болезнетворные) или фитопатогенные микроорганизмы, вызывающие болезни человека, домашних животных, сельскохозяйственных растений и лесов. Большой ущерб народному хозяйству наносят и обычные сапрофитные микробы, поселяясь на пищевых продуктах, кормах, промышленных товарах, по-врелсдая их и понижая товарные качества. В роли недругов человека могут выступать представители всех перечисленных [c.8]


    Некоторые бактерии всю свою энергию получают в результате неорганических реакций (гл. 1, разд. А,10). У этих хемолнтотрофных организмов метаболизм обычно родственен метаболизму гетеротрофных организмов, но при этом они обладают дополнительной способностью получать энергию за счет какого-то неорганического процесса. Они также обладают способностью к фиксации СОг, как и зеленые растения. Хло-ропласты зеленых растений, используя энергию солнечного света, снабт жают организм одновременно АТР и восстановителем NADH. Подобным же образом и литотрофные бактерии должны получать за счет неорганических реакций и энергию, н восстанавливающие вещества. [c.425]

    Растения, не использующие для своей жизнедеятельности вещества органической природы, называются аутотрофными организмами животные являются гетеротрофными организмами. Среди микроорганизмов встречаются как аутотрофы, так и гетеротрофы. Кроме того, для микроорганизмов характерным признаком считается наличие специфических химических веществ и реакций, не встречающихся в клетках животных и растений. [c.15]

    Вопрос о том, как, несмотря на всеобщность второго закона, живые организмы могут избежать тепловой емкости , объясняется двояко в зависимости от того, идет ли речь о зеленых растениях или о гетеротрофных организмах, нуждающихся в органической пище. Хотя обе группы не могут уменьшить энтропию окружающей среды и хотя в обоих группах все процессы протекают с понижением свободной энергии, все же хлорофиллоносные растения могут использовать световую энергию для фотосинтетической ассимилляции углекис- [c.470]

    Продуценты корриноидов найдены в основном среди бактерий, особенно среди гетеротрофных анаэробных бактерий, возникновение которых относят к архаэозойным периодам. Большинство этих бактерий гем не синтезируют. В то же время более молодые организмы, возникновение которых относится к кембрийскому периоду, такие как водоросли и протозеа, - образуют гем и не синтезируют корриноиды. Такой процесс получил расширение в последующие периоды, высшие растения не испытывают потребностей в корриноидных коферментах, но высшие животные и человек требуют для своей жизнедеятельности вещества корриноидной природы, даже сохранили отдельные реакции из синтеза, но корриноиды полностью синтезировать не могут. [c.291]

    Гетеротрофные микробы делятся на паразитов или патогенных, живущих на живом субстрате, вызывающих заболевания растений, животных и человека, и сапрофитов или непатогенных, питающихся неорганическим и мертвым органическим веществом. Последние принимают активное участие в круговороте веществ в природе. К ним относятся нитрификаторы, денитри-фикаторы, азотфиксаторы, аммонификаторы, бактерии, расщепляющие жи-, ры, клетчатку, уробактерии. Они разлагают белок, участвуют в процессах минерализации животных и растительных остатков, чем выполняют очень важную санитарную задачу. [c.46]

    В отличие от автотрофных микроорганизмов гетеротрофы нуждаются в готовых органических соединениях. Большинство гетеротрофных микроорганизмов используют органические вещества различных субстратов животного и растительного происхождения. Они называются, сапрофитами, или метатрофами. К ним относятся все микроорганизмы, разлагающие различные органические вещества в почве, в воде, участвующие в процессе биологической очистки сточных вод, микроорганизмы, используемые для переработки растительного и животного сырья. Некоторые гетеротрофы нуждаются в живом растительном или животном белке. Эти микроорганизмы называются паратрофа-ми, они паразитируют в организме растений или животны.х и вызывают их заболевания. [c.127]

    Различия во внешнем виде и в строении животных и растений, служившие вплоть до прошлого столетия основой классификации живых существ, видны с первого взгляда. Эти различия определяются принципиальной разницей в способе питания. Животные питаются готовыми органическими веществами (С-гетеротрофно), которые внутри их тела, в пищеварительном тракте, перевариваются и всасываются. В процессе эмбрионального развития животного пищеварительная полость образуется у него путем впячивания стенки зародыша на стадии гаструля-ции этот процесс должен обеспечить образование внутренних всасывающих поверхностей. Такой структурный принцип характерен для всего животного царства, от кишечнополостных (Нуёгогоа пример-гидра) до высших позвоночных. [c.10]

    Гетеротрофы (от греч. heteros — другой) нуждаются в органических соединениях углерода. В свою очередь, гетеротрофные микроорганизмы подразделяются на сапрофитов (сапро — гнилой, фит — растение) и паразитов. [c.58]

    Автотрофные организмы получают всю серу и азот, содержащиеся в клетке, из неорганических соединений. Автотрофное усвоение неорганических соединений серы и азота широко распространено в природе. Этой способностью обладают высшие зеленые растения, папоротники и мхи. Кроме того, известно, что многие водоросли, грибы и бактерии могут расти на среде, содержащей в качестве единственного источника серы сульфаты и в качестве единственного источника азота нитраты, аммиак и даже N2. Среди огромного разнообразия живых существ можно найти организмы, которые составят непрерывный ряд от полной автотрофности до почти полной гетеротрофности. Например, млекопитающие должны получать весь азот в виде органических соединений и почти всю серу в виде органических восстановленных соединений. Однако, как показали чрезвычайно интересные с эволюционной точки зрения исследования, проведенные с 8 -сульфатами, ткани эмбрионов высших животных обладают некоторой, хотя и ограниченной, способностью к восстановлению сульфатов и фиксации восстановленной серы с образованием цистеина. По-видимому, использование чувствительных методов с применением изотонов покажет, что полная гетеротрофность имеет место лишь в очень редких случаях. Все дело в том, соот- [c.274]

    Теперь мы обратимся к процессу, который служит в конечном счете источником почти всей биологической энергии, т.е. к процессу улавливания солнечной энергии фотосинтезирующими организмами и превращению ее в энергию биомассы. Фотосинтезирующие и гетеротрофные организмы сосуществуют в биосфере в сбалансированном стационарном состоянии (рис. 23-1). Фотосинтезирующие растения улавливают солнечную энергию и запасают ее в форме АТР и NADPH, которые служат им источником энергии для синтеза углеводов и других органических компонентов клетки из двуокиси углерода и воды при этом они вьщеляют в атмосферу кислород. Аэробные гетеротрофы используют этот кислород ДЛЯ расщепления богатых энергией органических продуктов фотосинтеза до СО2 и Н2О, чтобы генерировать таким путем АТР для своих собственных нужд. Двуокись углерода, образующаяся при дыхании гетеротрофов, возвращается в атмосферу и вновь используется фотосинтезирующими организмами. Солнечная энергия, таким образом, создает движущую силу для круговорота, в процессе которого атмосферная двуокись углерода и атмосферный кислород непрерывно циркулируют, проходя через биосферу (рис. 23-1). [c.683]

    Познакомимся теперь с тем, каким образом фотосинтезирующие организмы образуют глюкозу и прочие углеводы из СО2 и HjO, используя для этой цели энергию АТР и NADPH, образующихся в результате фотосинтетического переноса электронов. Здесь мы сталкиваемся с существенным различием между фотосинтезирующими организмами и гетеротрофами. Зеленым растениям и фотосинтезирующим бактериям двуокись углерода может служить единственным источником всех углеродных атомов, какие требуются им не только для биосинтеза целлюлозы или крахмала, но и для образования липидов, белков и многих других органических компонентов клетки. В отличие от них животные и вообще все гетеротрофные организмы не способны осуществлять реальное восстановление СО2 и образовывать таким образом новую глюкозу в сколько-нибудь заметных количествах. Мы, правда, видели, что СО2 может поглощаться животными тканями, например в ацетил-СоА-карбоксилаз-ной реакции во время синтеза жирных кислот [c.701]

    Царства животных и растений могли быть разграничены достаточно четко, до тех пор пока мало что было известно о микроорганизмах. Даже грибы имели столько общих с растениями признаков, что, несмотря на гетеротрофность, их можно было относить к растениям. Труднее было решить, к какому царству следует отнести бактерий, слизевики и другие одноклеточные организмы. Для третьего царства живых существ было предложено собирательное название протисты (Геккель, 1866 г.). [c.10]

    В результате исследований ван Ниль пришел к следуюш им двум основным выводам. Во-первых, наблюдения и Энгельмана, и Виноградского, и Молиша совершенно правильны, но произведены над различными организмами. Суш,еетвует два рода серобактерий— пигментированные фотоавтотрофные (Энгельман) и непигмен-тированиые (Виноградский), кроме того суш ествует еш,е особый вид пигментироваппых бактерий — гетеротрофные пурпурные бактерии (Молиш). Во-вторых, у фотосинтезирующих серных бактерий окисление сероводорода — не самостоятельный процесс, зависимый от нормального фотосинтеза только благодаря снабжению свободным кислородом, но представляет собой часть самого фотосинтетического механизма. Фотосинтез этих бактерий отличается от фотосинтеза высших растений тем, что в нем сероводород играет роль донора водорода вместо воды. [c.105]

    Настоящая и следующие четыре главы посвящены рассмотрению каталитических процессов. Мы начнем с первичной фиксации двуокиси углерода, изображенной в главе VII формулой Oa-i-f Og . Факты, относящиеся к природе комплекса двуокись углерода — акцептор в фотосинтезе, включают в себя кинетические наблюдения, опыты по поглощению двуокиси углерода растениями в темноте, фиксацию двуокиси углерода бактериями и другими гетеротрофными организмами и связывание двуокиси углерода различными абсорбентами in vitro. [c.179]

    Если мы даже допустим, что у несуккулентов яблочная и лимонная кислоты являются продуктами углеводного обмена, остается неизвестным, будут ли они нормальными промежуточными продуктами дыхания или побочными. Соображения о роли кислот в дыхании растений обычно являются переделками более тщательно изученного механизма окисления глюкозы в гетеротрофных клетках (мускульные ткани, дрожжевые клетки), которые не подкреплены прямыми экспериментальными доказательствами. [c.277]

    Жизнь на Земле неразрывно связана с лучистой энергией Солнца, и фотохимические реакции имеют для нее фундаментальное значение. Благодаря фотосинтезу в растениях образуются вещества, служащие источником энергии для гетеротрофных организмов. В конечном счете и горючие ископаемые, без которых развитие современной промышленности и техники было бы немыслимым, возникли фотосинтетически. Фотохимия имеет большое значение в биологии и биохимии, а также в некоторых отраслях химической промышленности и техники. Некоторые из этих аспектов мы рассмотрим. [c.348]

    Гетеротрофные микроорганизмы выделяют в среду гидролитические ферменты — протеазу, целлюлазу, амилазу. Функция этих ферментов очевидна она состоит в том, чтобы превращать нерастворимые вещества в доступные субстраты, используемые для роста. Подобного рода гидролитические ферменты выделяют в эндосперм щиток и клетки алейронового слоя прорастающих семян. Вследствие этого крахмал, белок и РНК эндосперма становятся доступны растущему зародышу. У насекомоядных растений имеются особые секреторные клетки, которые продуцируют ферменты, необходимые для переваривания добычи. Хотя ни в одном из указанных случаев механизм секреции не изучен, смысл секреции ферментов высокоспециализированными клетками очевиден. [c.18]

    В общем, анализируя всю совокупность живых организмов с точки зрения потребления различных форм серы и азота, можно обнаружить все возможные степени автотрофности. Вирусы и фаги, а также некоторые бактерии являются полными гетеротрофами. Для них необходимо, чтоб весь азот и сера были в восстановленной форме и притом в виде готовых органических соединений. У животных, некоторых простейших, бактерий и грибов могут сохраняться следы автотрофности. Но максимальная скорость роста достигается у этих организмов только в условиях гетеротрофного питания. Растения, а также некоторые бактерии и грибы при росте в условиях, когда органические соединения серы и азота недоступны, могут быть полными автотрофами. [c.274]

    Кузьменко М. И., Мережко А. И., Величко И. М. 1971. Роль гетеротрофного питания в продуктивности зеленых и синезеленых водорослей. Материалы по споровым растениям Украины. Киев, Наукова Думка . [c.240]


Смотреть страницы где упоминается термин Гетеротрофные растения: [c.17]    [c.389]    [c.10]    [c.20]    [c.395]    [c.32]    [c.498]    [c.376]    [c.281]    [c.421]    [c.26]    [c.164]    [c.277]    [c.460]   
Фотосинтез 1951 (1951) -- [ c.17 , c.216 , c.217 ]




ПОИСК







© 2024 chem21.info Реклама на сайте