Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура плавления хлоридов цезия

    Температуры плавления фторидов, хлоридов, бромидов и йодидов (рис. 65) довольно сильно различаются в случае лития, натр ия и калия, сближаясь в случае рубидия и становясь практически одинаковыми в случае цезия. [c.483]

    Расчет теплоты сублимации основан на том факте, что интенсивность пиков в спектре прямо пропорциональна давлению пара образца в ионном источнике. Образец помещают в емкость с отверстием очень небольшого диаметра (ячейка Кнудсена), соединяющим ее с ионным источником, поэтому вещество может попасть в источник только за счет диффузии чфез это отверстие. Если ячейка термостатирована и в ней имеется достаточное количество образца, так что часть его всегда находится в твердом виде, то теплоту сублимации образца можно определить, исследуя изменения интенсивности пика (которая связана с давлением пара) в зависимости от температуры образца. Небольшое количество образца, диффундирующее в ионный источник, не оказывает заметного влияния на равновесие. При таких исследованиях были получены интересные результаты относительно природы частиц, присутствующих в паре над некоторыми твердыми веществами, имеющими высокие температуры плавления. В паре над хлоридом лития были обнаружены мономеры, димеры и тримеры, а в паре над хлоридами натрия, калия и цезия — мономеры и димеры [20]. [c.327]


    Для структуры соли определяющим является не столько тип формулы, сколько координационные числа катиона и аниона и соотношение их ионных радиусов (разд. 6.4.3). В структуре хлорида цезия каждый ион Сз+ окружен восемью ионами С соответственно каждый ион С " — восемью ионами С5+.. В структуре хлорида нат рия координационные числа катиона и аниона равны шести. В структуре фторида кальция вокруг иона Са + расположено восемь ионов Р по принципу электронейтральности координационное число иона должно быть равно четырем. Координационные числа катиона и аниона можно указывать при написании формулы соединения (по Ниг-гли), например для хлорида цезия СзСЬ/в, для хлорида натрия Na l6/6, для хлорида кальция Сар8/4. Электростатическая модель объясняет в первом приближении ряд физических свойств ионных соединений —твердость, температуры плавления и кипения. [c.348]

    Электрическая проводимость расплавленных солей зависит от размера ионов, их заряда и энергии взаимодействия с их окружением. В табл. 5 приведены значения электрической проводимости некоторых расплавленных электролитов при температуре, близкой к температуре плавления [12]. На примере хлоридов щелочных металлов видно, что зависимость удельной электрической проводимости от типа ионов обратная, т. е. иная, чем в водных растворах. В расплавленных электролитах максимальную электрическую проводимость имеют галогениды лития и минимальную — галогениды цезия. Это объясняется тем, что в расплавленных солях под- [c.35]

    ВЫХ оснований или нуклеотидов, полученных после расщепления полимера (подробнее — см. стр. 58). С нуклеотидным составом ДНК однозначно связаны два физических свойства двухцепочечных комплексов, которые часто используются для характеристики полученных препаратов 2 . 2в Одно из них — так называемая температура плавления Гщ — это температура, при которой происходит распад двухцепочечного комплекса на одноцепочечные молекулы этот процесс легко наблюдать по изменению УФ-поглощения или оптического вращения раствора (подробнее см. в гл. 4). Другая характерная константа ДНК — плавучая плотность р — может быть определена из результатов равновесного ультрацентрифугирования Такое центрифугирование проводят обычно в растворах солей, обладающих высокой плотностью чаще всего применяют хлорид или сульфат цезия. При длительном центрифугировании устанавливается градиент плотности раствора, а ДНК собирается в узкой зоне, где существует равновесие между центробежной силой и выталкивающей силой, которая определяется разностью плотности осаждаемого вещества и применяемого солевого раствора в данной зоне. Равновесное центрифугирование в градиенте плотности Сз С1 может служить не только аналитическим методом для характеристики препарата ДНК, но и полезным препаративным методом для разделения ДНК, различающихся по нуклеотидному составу. Подобным же образом препаративное ультрацентрифугирование в градиенте плотности сахарозы используется для разделения молекул ДНК, различающихся по скорости седиментации. [c.31]


    При изучении термической устойчивости азидов металлов вообще необходимо учитывать отклонения от чистоионного типа связи. Однако в настоящем обзоре мы будем исходить из предположения, что перенос электрона является полным, и принимаем, что потенциалы ионизации натрия, калия, рубидия и цезия соответственно равны 5,12, 4,32, 4,16 и 3,87 ав, а сродство радикала азида к электрону —3,05 эв. Однако как указал Грей [1] для вычисления энергии решетки нет необходимости вводить предположение о чисто ионном характере связи. Энергия решетки ККд и NaNз составляет соответственно 157 и 175 ккал-молъ . Указанные значения энергий решетки аналогичны таковым для галогепидов этих металлов, хотя температуры плавления азидов (320—350°) значительно ниже, чем у соответствующих хлоридов и бромидов [1,66]. [c.139]

    ЛИЯ К цезию, хотя температура плавления соответствующих хлоридов щелочных металлов понижается. [c.53]

    Энантиотропное превращение наблюдается у веществ, кристаллизующихся в двух или нескольких кристаллических формах, каждая из которых устойчива в определенной области температур. Обратимый переход одной формы в другую происходит при строго определенной температуре, называемой температурой полиморфного превращения. Устойчивая при высокой температуре форма, естественно, более богата энергией превращение устойчивой при низкой температуре формы в устойчивую при высокой температуре форму происходит с поглощением тепла, обратное превращение — с выделением тепла (так же как плавление кристалла и затвердевание расплава или кипение жидкости и конденсация паров). Так, сера кристаллизуется в ромбической и моноклинной формах. Ромбическая сера устойчива при низкой температуре, а моноклинная — при более высокой температура превращения находится при 95,5°. Как было уже отмечено (см. стр. 115), две формы хлорида цезия превращаются одна в другую при 460°. Нитрат аммония кристаллизуется не менее чем в пяти кристаллических формах с четырьмя температурами превращения (при —16, +35, 85 и 125°). [c.131]

    Были исследованы структуры фторида иттрия [140] и фторидов лантана, церия, празеодима, неодима, самария и европия [82]. Однако для структур других галоидных солей этих элементов надежных данных в литературе пет. К сожалению, ничего неизвестно о галогенидах трехвалентных галлия, индия и таллия, в связи с чем нет возможности сопоставить структуры хлорида и фторида таллия, температуры плавления которых, как известно, сильно различаются (температура плавления первого 25°, а второго 550°). Фторид одновалентного таллия [66] имеет деформированную решетку хлорида натрия другие же галогениды одновалентного таллия [45] кристаллизуются в структуре хлорида цезия и, в отличие от фторида, нерастворимы в воде. Эти соотношения растворимости галогенидов напоминают соответствующие соотношения, наблюдаемые у галогенидов серебра. [c.20]

    Температуры плавления галогенидов рубидия и цезия уменьшаются от фторидов к иодидам. При плавлении монокристаллов галогенидов цезия наблюдается увеличение объема на 27—28%. Фторид, хлорид и иодид рубидия с металлическим Rb в расплавленном состоянии образуют две жидкие фазы. Полная смешиваемость найдена только в системах RbBr—Rb и sF— s [122, 123]. [c.92]

    Хлориды рубидия и цезия достаточно термически устойчивы плавятся без разложения с незначительным улетучиванием, которое наступает несколько ниже температуры их плавления [95]. Полная картина изменения давления паров МеС1 в интервале 800—1400° представлена на рис. 16 [31]. В вакууме при 440°скорость сублимации s l значительно выше, чем Rb l, и тем более выше,чем КС1. Это может представить интерес в плане разделения трех близких по свойствам щелочных металлов в виде их хлоридов [61. [c.101]

    Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекают) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все ш,елочные металлы превраш,аются в легкорастворимые соединения — их можно выш,елачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция — отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия — хлорид, сульфат или карбонат. Но это еш,е только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия — крупнейшему немецкому химику Бунзену — так и не удалось получить элемент № 55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4 1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Более рациональный способ найден в 1890 г. известным русским химиком Н. Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического. [c.93]


    Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекают) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения — их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция — отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия — хлорид, сульфат или карбонат. По это еще только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия — крупнейшему немецкому химику Бунзену — так и не удалось получить элемент № 55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4 1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Более ра- [c.48]

    Литий и натрий получают электролизом расплавленных солей или легкоплавких эвтектических смесей типа a l2 fNa l. Калий, рубидий и цезий трудно получать электролизом, поскольку они имеют низкие температуры плавления й легко испаряются. Их по -дучают обработкой расплавленных хлоридов парами натрия. Металлы очищают перегонкой. Литий, натрий, калий и рубидий имеют серебристый цвет, а цезий — золотисто-желтый. Энергии связи в металлических решетках с плотными упаковками относительно невелики, поскольку имеется лишь один валентный электрон на каждый атом металла. Поэтому металлы очень мягкие и имеют низкие температуры плавления. Сплав натрия и калия, содержащий 77,2% К, плавится при—12,3°С. [c.259]

    Очень трудно удалить весь хлорид аммония из большого количества хлоридов щелочных металлов и избежать при этом улетучивания последних. В таких случаях лучше растворить взвешенные хлориды в воде, снова выпарить раствор, прокалить остаток и взвесить. Прокаливание не следует проводить при температуре выше 500°. Хлорид калия медленно улетучивается даже нз не совсем сплавленной соли. Хлорид лития очень гигроскопичен, хлорид натрия—слегка гигроскопичен. Если присутствует литий, смесь хлоридов надо во время взь.,шивания защищать от возможности проникновения влаги. Хлориды калия, рубидия и цезия не гигроскопичны, если они чисты и хорошо высушены. Следы примесей, например хлорида магния, могут заметно увеличить их гигроскопичность. Отмечено [Q. F. S m i t h, F. М. Stubblefield, E. В. М i d-d 1 e t о п, Ind. Eng. hem., Anal. Ed., 6, 314 (1934)], что смесь хлоридов удерживает некоторое количество воды даже при 550° нагревать надо до плавления соли, но не допускать улетучивания. [c.925]


Смотреть страницы где упоминается термин Температура плавления хлоридов цезия: [c.161]    [c.49]    [c.379]    [c.1010]   
Неорганические хлориды (1980) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Температура плавления

Цезий

Цезий цезий

Цезия хлорид



© 2025 chem21.info Реклама на сайте