Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кор липополисахаридов микроорганизмов

    Второй пример — липополисахариды грамотрицательных бактерий, располагающиеся на внешней поверхности бактериальной клетки. На контакт именно с этими биополимерами животный органиэм-хозяин дает иммунный ответ — начинает вырабатывать антитела. Иными словами, липополисахариды такого типа — это высокоактивные и высокоспецифичные антигены, структура которых строго индивидуальна для каждого вида микроорганизмов. Однако схема построения этих структур имеет весьма общий характер для больших классов микроорганизмов. Вот как приблизительно они построены. [c.46]


    ЛИПОПОЛИСАХАРИДЫ, смешанные биополимеры, включающие полисахаридную часть и ковалентно связанный с ней липидный остаток Л характерны для микроорганизмов Наиб подробно изучены Л грамотрицат бактерий и, прежде всего, знте- [c.602]

    Система комплемента является частью иммунной системы и осуществляет неспецифическую защиту организма от бактерий и других проникающих в организм возбудителей болезней. Систему комплемента составляют около 20 белков плазмы крови, так называемых факторов комплемента . Все реакции системы комплемента осуществляются, как правило, на поверхности микроорганизма. Белковые факторы комплемента с С1 по С9 инициируют классический путь активации комплемента, а факторы В и В участвуют в активации альтернативного пути. Инициация классического пути происходит благодаря взаимодействию компонента С1 с несколькими молекулами IgG или IgM на поверхности микроорганизма. Альтернативный путь инициируется связыванием фактора В, например, с бактериальным липополисахаридом (эндотоксином). И классический, и альтернативный пути активации комплемента ведут к расщеплению белкового компонента СЗ на два фрагмента, меньший из которых участвует в развитии воспалительного процесса, а более крупный связывается за счет ковалентных связей с поверхностью бактериальной клетки и инициирует цепь реакций, ведущих в конечном счете к ги бели бактерии. [c.488]

    Липополисахариды в грам-отрицательных микроорганизмах являются антигенами и токсичны (см. обзор Осборна с сотрудниками [331]. [c.255]

    Среди исследованных непатогенных микроорганизмов обнаружены культуры, которые можно использовать как источник липополисахаридов, способных вызывать образование специфичных антител у животных при введении этого препарата [Коваленко и др., 1978]. [c.88]

    С точки зрения пищевого использования микроорганизмов структура и состав клеточной стенки имеют решающее значение. Клеточные стенки грамотрицательных бактерий содержат антигены (липополисахариды), которые обычно токсичны. Клеточные стенки обладают также D-аминокислотами, аминосахарами (глюкозамин, галактозамин), влияние которых на организм человека изучено еще недостаточно. В гидролизатах клеток Водородных бактерий и в клеточных стенках найдены амино-сахара, которые выходили с колонки аминокислотного анализатора перед лизином. Общее их содержание составляло 0,3— 0,6% от сухого веса биомассы бактерий. [c.93]


    Цепь событий с участием макрофагов представляется следующим образом. Патоген, преодолевший эпителиальный барьер, сталкивается с фагоцитирующими мононуклеарами, которые экспрессируют на своей поверхности рецепторы к наиболее общим компонентам клеточной стенки микроорганизмов. Среди них — рецепторы к липополисахариду и маннозе. Взаимодействие патогена с макрофагами приводит к поглощению микробной клетки посредством фагоцитоза и ее последующему разрушению в фаголизосомах. [c.324]

    Приобретенные дефекты продукции цитокинов нередко связаны с вмешательствами патогенных микроорганизмов, которые могут своими компонентами и продуктами индуцировать, стимулировать или ингибировать синтез цитокинов макрофагами и экспрессию их рецепторов. Наиболее активными бактериальными компонентами являются липополисахариды клеточной стенки грамотрицательных бактерий (ЛПС) [58]. [c.195]

    Однозначное установление локализации мест включения мембранных компонентов затрудняется их значительной латеральной (в плоскости мембраны) подвижностью, составляющей, например, для липополисахарида наружной мембраны Е. соИ около 1 мкм за 25 с. Кроме того, способ сегрегации мембраны может определяться скоростью роста микроорганизма у медленно растущих клеток Е. соИ он близок к биполярному, а у быстро растущих клеток становится дисперсивным. [c.67]

    В организм попали болезнетворные микроорганизмы. Резко повышается температура, энергично вырабатывается иммунный ответ организма. На что в первую очередь реагирует организм-хозяин На то, с чем соприкасается прежде всего на материал, выстилающий внешнюю поверхность клеток-паразитов. У одного из классов возбудителей инфекционных болезней это липополисахариды — высокомолекулярные структуры, включающие липидную и полисахаридную части. У каждого вида — свои липо-нолисахариды, и ответ на них строго индивидуален и специфичен (так, иммунитет против брюшного тифа не спасает от возвратного). [c.6]

    Типичные грамположительные микроорганизмы имеют толстый, многослойный муреиновый мешок (толщина 20 — 50 нм), содержащий до 40 слоев пептидогликана (см. рис. 23). Грамотрицательные бактерии обладают более сложной клеточной оболочкой, имеющей внешнюю мембрану (см. рис. 24). По сравнению с ЦПМ внешняя мембрана (ВМ) является сильно асимметричным липидным бислоем, в котором внутренний слой состоит из фосфолипидов, а внешний — из липополисахаридов. Между цитоплазматической и внешней мембранами возникает уникальное образование, называемое периплазматическим пространством периплазмой). Муреиновый мешок таких бактерий встроен в периплазму и состоит всего лишь из одного слоя (толщина 3 нм). ВМ и муреиновый слой соединены липопротеином, который своим N-koh-цом с замещенными жирными кислотами погружен во внешнюю мембрану, а его карбоксильный конец связан с муреином. ВМ содержит белки-порины, формирующие поры. [c.39]

    Липополисахарид грамотрицательных бактерий представляет собой высокомолекулярный полимер смешанной природы, морфологическая структура ЛПС независимо от микроорганизма очень сз од-на. У некоторых видов ЛПС обнаружено ветвление основной ленточной структуры, у других отмечена трехелойность лентоподобных образований. [c.375]

    Биол. ф-ции П. разнообразны. Крахмал, гликоген, ламн-наран, инулин, нек-рые растит, слизи — энергетич. резерв клеток растений и животных. Целлюлоза и гемицеллюлозы в растениях, хитин в беспозвоночных и грибах, мукополисахариды соединит, тканей животных — опорные П. Капсульные П. микроорганизмов, гиалуроновая кислота и гепарин в животных тканях выполняют защитную ф-цию. Липополисахариды бактерий и гликопротеиды пов-сти животных клеток обеспечивают специфичность межклеточного взаимод. и иммунологич. р-ций организма. [c.466]

    Процесс выделения полисахаридов можно облегчить путем изменения поверхностных свойств микроорганизма-продуцента (например, за счет удаления поверхностного полимерного ма-териала типа липополисахаридов) В подобных мутантных культурах происходит аутоагглютинация и спонтанная флоку-ляция, что уменьшает число необходимых операций центрифугирования. Однако нужно внимательно следить зачтем, чтобы у таких мутантов клеточный материал, например белки, не утекал из периплазматического пространства или не происходил лизис с загрязнением конечного продукта. К другим изменениям относятся мутации капсулообразующих организмов, приводящие к появлению стабильных, образующих слизи бак терий, а также получение устойчивых к фагам мутантов, что уменьшает риск заражения фагом в процессе производства. [c.233]

    Изменения состава белков могут происходить либо в метаболических ферментах [69], что блокирует метаболизм вредного вещества, либо в транспортной системе или в клеточной стенке [70], что блокирует их поступление в клетку. Сообщалось о потере в таких условиях специальных транспортных белков мембраны [71]. Кроме того, микроорганизмы могут продуцировать внеклеточные связывающие белки, такие как металло-тионены [72], или пассировать токсины в цитоплазматических вакуолях или гранулах. Неспецифическое внеклеточное связывание токсинов такими компонентами клеточной стенки, как тей-хоевая кислота, полисахариды и липополисахариды, также способствует детоксикации [73]. Известно, что многие из этих адаптаций детерминированы плазмидами, как, например, двойная резистентность некоторых штаммов Staphylo o us aureus к ртути и антибиотикам. [c.55]


    Эти микроорганизмы имеют атипичную клеточную стенку муреин по строению близок к грамположительному типу, у них отсутствуют липополисахариды, наличие белкового слоя варьирует, а клетки красятся по Граму отрицательно. В природных местообитаниях способны образовывать эндоспоры, но в лабораторной культуре это свойство теряется. Одноклеточные плейоморф- [c.193]

    Микробные местообитания. Места обитания микроорганизмов имеют сложный и постоянно меняющийся характер и зависят от градиентов питательных веществ, токсических соединений и лимитирующих факторов (температура, pH, свет, активность воды и т.д.). Поэтому экологических ниш для микроорганизмов бесконечное множество, но именно сочетание вышеперечисленных факторов определяет экологическую нишу для конкретного микроорганизма. Ее называют также первичной экологической нишей. Для точной характеристики местообитания микроорганизма нужно учитывать его микроокружение. Многие специализированные группы микроорганизмов существуют в таких условиях микроокружения, что испытывают минимальную конкуренцию со стороны других микроорганизмов. Например, Heli oba ter pylori, обитающий вже-лудочно-кишечном тракте человека и вызывающий образование язв желудка, кишечника, мочевой системы, для защиты от желудочного сока образует большое количество уреазы, которая разлагает мочевину и образует аммоний. Уходить от действия иммунной системы ему помогают липополисахариды, обладающие вариабельностью и молекулярной мимикрией . [c.265]

    Один из способов поглощения бактерий связан с рецепторами к маннозе, которые способны взаимодействовать с углеводами бактериальной стенки. Захваченные микроорганизмы деградируют в фаголизосомах, образуя отдельные пептиды, которые выносятся на клеточную поверхность в комплексе с молекулами МНС. Именно в процессе внутриклеточного переваривания кор-пускулярого антигена происходит индукция синтеза и экспрессии на клеточной поверхности молекул II класса и костимулятора 87. Факторы индукции неизвестны. Возможно, ими являются рецепторы клеточной поверхности, взаимодействующие с микроорганизмами, поскольку синтез В7 можно индуцировать простой инкубацией макрофагов с отдельными компонентами (углеводами, липополисахаридами) бактериальной стенки. [c.217]

    Активация альтернативного пути развития системы комплемента и поглощение макрофагами преодолевших эпителиальный барьер микроорганизмов представляют собой наиболее раннюю реакцию врожденного, неспецифического иммунитета, которая встречается в первые часы после заражения. Если же микроорганизм все-таки ускользает от постоянно присутствующих факторов ранней, немедленной защиты, то мобилизуются клеточные и гуморальные механизмы, которые хфактеризуют собой ранний индукционный ответ. Импульсом к развитию такого ответа является факт распознавания атигенов микроорганизмов, которые по своей природе являются наиболее общими для них, например упоминавшийся выше липополисахарид. Понятно, что тонкая антиген-распознающая специфичность, свойственная адаптивному иммунитету, в данном случае отсутствует. Более того, природа факторов, включенных в ранний индукционный ответ, такова, что не создает памяти от первичного контакта с антигеном, столь свойственной специфическому иммунитету. Следует помнить, что именно на неспецифическом этапе развития противоинфекционного иммунитета закладываются основы для формирования специфического ответа. Этот преадаптационный процесс связан в первую очередь с переработкой антигенов микроорганизмов в их индуци-324 [c.324]

    Могут быть успешно получены антисыворотки ко многим грамположительным и грамотрицательным бактериям. Поскольку преимущественно образуются серотипспецифические антитела (т. е. к углеводным структурам липополисахаридов грамотрицательных микроорганизмов, характерных для данного штамма), кроличьи сыворотки используют для серодиагностики. Перекрестная абсорбция клетками других типов и видов не представляет труда и позволяет удалить антитела к общим эпотипам белков наружной мембраны. [c.83]

    Существуют различные иммунологические механизмы для разрушения клеточных стенок различных микроорганизмов. Микробы всех типов обладают цитоплазматической мембраной и пептидогликановой клеточной стенкой. Грамотрицательные бактерии, кроме того, имеют наружную мембрану, внешний слой которой содержит липополисахарид (ЛПС). Лизосомные ферменты и лизоцим разрушают структуру пептидогликана, а катионные белки и комплемент -наружную мембрану грамотрицательных бактерий. Клеточная стенка микобактерий чрезвычайно устойчива к различным воздействиям по-видимому, ее [c.317]

    Одной из форм мутаций является диссоциация (от лат. disso iatio — расщепление) — возникновение в популяции микроорганизмов особей, отличающихся от исходных микроорганизмов внешним видом и структурой колоний, так называемых S-и R-форм (от англ. smooth — гладкий, rough — шероховатый). S-формы колоний — круглые, влажные, с блестящей гладкой поверхностью, ровными краями R-формы образуют колонии неправильной формы, непрозрачные, сухие с зазубренными краями и неровной шероховатой поверхностью. Различному внешнему виду колоний соответствует ряд свойств. Чаще S-формы более вирулентны, клетки имеют нормальную морфологию, биохимически более активны, обычно выделяются в остром периоде заболевания у капсульных видов хорошо развиты капсулы, у подвижных видов имеются жгутики. Гладкие (S) и шероховатые (R) колонии являются крайними формами диссоциации, между которыми могут встречаться переходные формы. Диссоциация рассматривается как явление генетической природы, связанное с хромосомными мутациями генов, контролирующих синтез липополисахаридов клеточной стенки бактерий. [c.88]

    Гетерогенные антигены — это общие или межвидовые (сходные по специфичности) антигены. Впервые их открыл Дж. Форссман. Иммунизируя кролика водной вытяжкой из почек морской свинки, он вызвал образование в его сыворотке групповых антител, реагировавших с эритроцитами барана. Далее выяснилось, что форссмановский антиген является липополисахаридом и встречается в органах лошадей, кошек, собак, черепах. Общие антигены обнаружены у эритроцитов человека и гноеродных кокков, энтеробактерий, вирусов оспы, гриппа и других микроорганизмов. Групповая общность антигенной структуры у различных видов клеток полз ила название антигенной мимикрии. В случаях антигенной мимикрии иммунная система человека утрачивает способность быстро распознавать чужеродную метку и вырабатывать иммунитет, в результате чего патогенные микробы некоторое время могут беспрепятственно размножаться в организме. Антигенной мимикрией пытаются обосновать длительное выживание патогенных микробов в организме больного, или персистенцию, резидентное (устойчивое) микробонос ительство и даже поствакцинальные осложнения. [c.23]


Смотреть страницы где упоминается термин Кор липополисахаридов микроорганизмов: [c.195]    [c.466]    [c.303]    [c.229]    [c.192]    [c.194]    [c.194]    [c.146]    [c.40]    [c.124]    [c.125]    [c.229]    [c.115]    [c.183]    [c.119]    [c.226]   
Химия и биохимия углеводов (1978) -- [ c.192 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Липополисахариды

Липополисахариды грамотрицательных микроорганизмов



© 2025 chem21.info Реклама на сайте