Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лауэграмма

Рис. VI.2. Схемы рентгеносъемки, иллюстрирующие формирование дифракционных пятен на лауэграммах (а) н эпиграммах (б) и соответствующие рентгенограммы монокристалла меди (в, г). Рис. VI.2. Схемы рентгеносъемки, иллюстрирующие <a href="/info/1387229">формирование дифракционных</a> пятен на лауэграммах (а) н эпиграммах (б) и соответствующие <a href="/info/1837941">рентгенограммы монокристалла</a> меди (в, г).

Рис. А.47. Лауэграмма кристалла с осью симметрии третьего порядка. Рис. А.47. Лауэграмма кристалла с осью <a href="/info/103575">симметрии третьего</a> порядка.
    Определение симметрии кристаллов по лауэграммам [c.151]

Рис. 40. Лауэграмма монокристалла кремния Рис. 40. Лауэграмма монокристалла кремния
    ИЛИ между образцом и источником рентгеновского излучения (обратная съемка). Рентгенограммы, полученные при прямой съемке, называются лауэграммами, при обратной съемке — эпиграммами. Лауэграмма имеет вид отдельных пятен-рефлексов, расположенных вокруг пятна, оставленного первичным пучком рентгеновских лучей и группирующихся в более или менее. четко выраженные эллипсы, проходящие через центр лауэграммы (рис. 40). Эпиграммы имеют примерно такой же вид, но пятна группируются по гиперболам, которые в частном случае могут вырождаться в прямые линии. [c.79]

    Полихроматический метод. Схема рентгеновской камеры для получения рентгенограмм по методу Лауэ (лауэграмм) представлена на рис. 32. Пучок рентгеновских лучей ММ направлен на неподвижный кристалл плоская кассета с пленкой расположена за кристаллом. На пленке фиксируется лишь часть дифракционного спектра, даваемого кристаллом, хотя, в принципе, мож- [c.67]

Рис. 5-4. Лауэграмма чешуек графита Шри-Ланка. А = 50 мкм. Излучение Си [5-11] Рис. 5-4. Лауэграмма чешуек графита Шри-Ланка. А = 50 мкм. Излучение Си [5-11]
    Если объектом исследования служит плохо ограненный кристалл или обломок кристалла, основным исходным методом съемки служит полихроматический метод Лауэ. Из лауэграмм и эпиграмм [c.82]

    На рис. Vni.3 приведены некоторые характерные лауэграммы, позволяющие непосредственно по снимку выявить наличие в кристалле тех или иных элементов симметрии. Во многих случаях этого оказывается достаточно для однозначного заключения об ориентации исследуемого кристалла. [c.153]


    Возможности метода Лауэ не ограничиваются только определением симметрии кристалла и его ориентации. Он может быть использован для определения структуры кристалла, для изучения диффузного рассеяния и для ряда других задач [9]. Интересный пример применения метода Лауэ для установления ориентационных соотношений фаз, возникающих при распаде пересыщенных твердых растворов, приведен в работе [10. Авторы показали, что выявление и анализ элементов симметрии матрицы и фазы на лауэграммах монокристалла распавшегося сплава позволяют установить ориентационные соотношения между их кристаллическими решетками. Большим преимуществом этого метода является его экспрессность и наглядность. [c.153]

Рис. 17. Лауэграмма монокристалла (а) и двойника графита (б) Рис. 17. Лауэграмма монокристалла (а) и двойника графита (б)
    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Для получения особо чистых образцов, карбазол марки ч очищался хроматографическим методом, затем сублимацией и зонной плавкой. Оценка чистоты образцов проводилась методом хромато-масс-спектрометрии. Обнаруженные примеси составляют антрацен—0,0%, метилкарбазол—0,005% и тетраметилнафта-лин — 0,005%. Исследование физических свойств проводилось на монокристаллических образцах, выращенных по методу Бриджмана [1]. Ориентация образцов осуществлялась рентгенографическим методом по прямым лауэграммам [2]. [c.123]

    На рис. 5-4 показана лауэграмма чешуек графита Шри-Ланка, снятая перпендикулярно их плоскости. Как видно из фотографии, наблюдаются рефлексы, свойственные монокристаллу. Некоторые расширения дифракционных точек свидетельствуют о мозаичной структуре в природном графите. Хорошо модулированный рефлекс (10) и слабая интенсивность линии (002) указывают на резко выраженную кристаллографическую текстуру. Расположение частичек в положении, перпендикулярном рассмотренному выше, дает сильный рефлекс (002). По степени размытости дифрационных точек можно определить размер кристаллитов, входящих в мозаику. Чем больше раз- [c.236]

    Образование газовых пузырей и нарастание давления газа в них с повышением температуры приводит к двум основным механизмам деформации графитовых слоев при тепловом ударе развитию трещин в графитовых чешуйках (клиновидным дефектам) и скручиванию слоев. Деформация графитовой матрицы в сочетании с нагревом и переходом от МСС к ТРГ спос< бствует образованию в составе ТРГ трехмерноупорядочентых объемов. Об этом свидетельствуют лауэграммы образцов ТРГ, на которых появляются линии от косых плоскостей (А к I), отсутствовавших в МСС. [c.358]

    Достоинством этого способа яв.пяется более полная регистрация интерференционной картины. Существуют и другие способы установки пленки для регистрации лауэграмм [6]. Рентгеновские камеры отечественного производства типа РКСО imh РКВ-86 обеспечивают возможность получения рентгенограмм по методу Лауэ для различных способов закладки фотопленки [3]. [c.114]


    Метод Лауэ получил наибольшее распространение для определения ориентации монокристаллов, изучения их симметрии и степени совершенства их кристаллического строения, однако с его помощью успешно решаются и другие задачи структурной кристаллографии. В гл. VIII показано, как с помощью лауэграмм определяется симметрия кристаллов. [c.114]

    Лауэграммы и эпиграммы с неподвижного кристалла могут быть получены в рентгеновской камере РКСО-2 (рис. VII. 4, а). Съемка осуществляется на плоские кассеты 1 а 2, которые могут быть установлены позади кристалла или перед ним. [c.129]

    Рентгеновская камера РКВ-86А, показанная на рис. VII.4, б, обладает существенно большими возможностями для экспериментального рентгеновского изучения монокристаллов но сравнению с рентгеновскойГкамерой РКСО-2. Наряду с плоскими лауэграм-мами и эпиграммами, получаемыми в кассетах 1 и 2, камера РКВ-86А позволяет получать лауэграммы на цилиндрической пленке, установленной в специальной кассете 3. Наличие в камере РКВ-86А специального механизма обеспечивает получение рентгенограмм вращения и качания. Цилиндрическая кассета дает возможность регистрировать дифракционную картину по нулевой слоевой линии в интервале углов от 4 до 84°, а сами слоевые линии регистрируются по углам от —48 до - -48°. Качание образца можно производить в угловых интервалах 3, 6, 10 или 15°, причем переход от одного положения к другому и смена интервала качаний возможны в процессе рентгеносъемки. [c.129]

    В гл. II было показано, что существуют только 32 кристаллических класса и их отбор из всех возможных точечных групп определяется законами симметрии кристаллов. Симметрию кристаллов можно онределить по лауэграммам, однако, с их помощью нельзя различить все 32 класса. Причина заключается в неразличимости [c.151]

    В соответствии с этим применяются три различных способа рентгеновского структурного анализа. В одном из них — методе Лауэ пучок рентгеновских лучей всевозможных длин волн проходит через диафрагму и падает на поверхность кристалла под некоторым определенным углом (рис. 13). В потоке лучей всегда найдутся такие, длины которых удовлетворяют условию (а), при этом в результате отражения на фотографической пластинке, наряду с центральным пятном от непреломившегося луча, получаются симметрично расположенные вокруг него пятна, каждое из которых соответствует каким-нибудь кий. Лауэграмма (рис. 14) дает возможность определить симметрию кристалла и его ориентировку. Расшифровка лауэграмм — достаточно сложная задача. [c.57]

    В принципе метод Лауэ можно использовать также для решения одной из промежуточных задач структурного исследования — установления точечной группы симметрии кристалла, или, точнее, его класса Лауэ (с учетом закона центросимметричности рентгеновской оптики— см. ниже). Для этого требуется повернуть кристалл так, чтобы с первичным пучком совпал предполагаемый элемент симметрии — ось симметрии и (или) плоскость симметрии. Тогда симметрия в расположении пятен на рентгенограмме отразит именно эти элементы симметрии. Из нескольких лауэграмм, снятых при раз- [c.68]

    Исследования показали, что в условиях эксперимента алмазы, наряду с хрупким разрушением, подвергались пластической деформации. Пластическая деформация, фиксируемая рентгенографическими и оптическими методами, обнаруживалась только после обработок при температуре 1500—1600° К и выше. Степень деформации и общей дефектности кристалла после обработки были достаточно велики. Физическое уширение кривых качания, снятых на двухкристальном сп-ектрометре, после деформации обычно было равно 50—100", и в некоторых случаях — около 1000" (рис. 1). Пластическая деформация проходила крайне неоднородно по образцу, что выявлялось как на лауэграммах, так и кривых качания. Оценка плотности дислокаций, введенных деформацией, по [c.151]

    В середине 1930-х годов Дж. Берналом, Д. Ходжкин, И. Фанкухеном, Р. Райли, М. Перутцем и другими исследователями начато изучение кристаллографических трехмерных структур глобулярных белков. Получены лауэграммы пепсина, лактоглобулина, химотрипсина и некоторых других хорошо кристаллизующихся водорастворимых белков. Картины рассеяния рентгеновских лучей от монокристаллов содержали десятки тысяч четко выраженных рефлексов, что указывало на принципиальную возможность идентификации координат во много раз меньшего числа атомов белковых молекул (за исключением водорода). На реализацию этой возможности ушло более четверти века. Однако сам факт наблюдения богатых отражениями рентгенограмм говорил о многом. Например, он позволил сделать вывод об идентичности всех молекул каждого белка в кристалле, как правило, не теряющего в этом состоянии свою физиологическую активность. Кроме того, были оценены ориентировочные размеры, формы, симметрия и молекулярные массы исследованных белков, размеры их элементарных ячеек, а также возможное число аминокислотных остатков в ячейке. Дальнейшее развитие этой области вплоть до начала 1960-х годов замкнулось на решении внутренних, чисто методологических задач, связанных с расшифровкой рентгенограмм. [c.70]

    Синтетические аморфные полимеры (например, каучук) дают, подобно жидкостям, дифракционные картипы в виде совокупности концентрических колец диаграммы Дебая — Шерера, рис. 5.6). Для такой картины, несравненно более бедной, чем лауэграмма кристалла, характерно наличие размытого кольца — аморфного гало, диаметр которого определяется преимущественными расстояниями между рассеивающими центрами. При растяжении аморфного полимера возникает текстура и вместо равномерных по интенсивности колец, как мы видим, наблюдаются более или менее протяженные дуги вблизи меридиана или экватора кольца. Сходные картины дают фибриллярные белки, а также надмолекулярные структуры типа мышечных волокон. [c.136]

    Проявления волокнистого роста в свое время были зафиксированы в природных алмазах с оболочками ( oated diamond), в некоторых кубических кристаллах, а также ряде разновидностей округлых алмазов по направлениям <111>, <100> и <110> [21]. Вследствие закономерно ориентированного параллельно-волокнистого строения пучков по всем возможным эквивалентным направлениям такие кристаллы были охарактеризованы как изометрические сферокристаллы. Наряду с округлыми поверхностями фронта роста в сферокристаллах могут развиваться и плоские грани (100) и (111). В связи с закономерным упорядоченным волокнистым внутренним строением сферокристаллы обладают свойствами монокристаллов, о чем свидетельствует однотипность вида лауэграмм, получаемых от сферо- и монокристаллов. Однако термин сферокристалл , введенный А. В. Шубниковым, подразумевает образование тонковолокнистого сферолита, волокнистость которого развивается из одного центра в радиальных направлениях без разбиения на сектора, а свойства идентичны по всем произвольно выделенным секторам роста. В синтетических алмазах наличие секториальной волокнистости, центры зарождения которой распределены по определенным кристаллографическим направлениям, присутствие плоских граней, отвечающих секторам роста, позволяет характеризовать их как кристаллы волокнисто-секториального строения (вторичная секториальность— термин Л. И. Цинобера). [c.399]

    Образование включений подтипа 1а связывается с механическим захватом среды кристаллизации, растущей с достаточно большой скоростью гранью при наличии на ней макрорезиста. Анализ лауэграмм образцов позволил установить, что такие включения двумерны и захват сопровождается параллельным срастанием (сопряжением) с решеткой алмаза без заметного ее искажения. Хлопьевидные включения (подтип 16) образуются в результате диффузии материала контейнера в расплаве металла-растворителя и захвата растущим алмазом на заключительной стадии процесса синтеза при его длительности около 600 с и более. Закономерности распределения и состав включений второго типа позволяют объяснить их образование накопле- [c.402]

    О природе рентгеновских лучей велись споры. Некоторые физики полагали, что они представляют собой поток материальных частиц, другие считали, что они аналогичны лучам обычного света. Лишь в 1913 г. Макс Лауэ (1879—1960), Вальтер Фридрих (1883—1968) и Пауль Книппинг (1883—1935) обнаружили дифракцию этих лучей при прохождении через кристаллы. Они подтвердили тем самым точку зрения о том, что рентгеновские лучи представляют собой коротковолновые световые лучи. Это открытие легло в основу рентгенографии (лауэграммы). [c.205]


Смотреть страницы где упоминается термин Лауэграмма: [c.292]    [c.345]    [c.91]    [c.92]    [c.92]    [c.110]    [c.153]    [c.83]    [c.114]    [c.151]    [c.58]    [c.134]    [c.196]    [c.196]    [c.131]    [c.215]    [c.100]   
Биофизика (1988) -- [ c.131 ]

Физикохимия полимеров (1968) -- [ c.100 ]

Введение в физику полимеров (1978) -- [ c.38 ]

Курс неорганической химии (1963) -- [ c.231 ]

Общая химия (1974) -- [ c.769 , c.770 ]

Строение материи и химическая связь (1974) -- [ c.133 ]

Курс неорганической химии (1972) -- [ c.207 ]

Физическая химия (1967) -- [ c.657 ]




ПОИСК







© 2025 chem21.info Реклама на сайте