Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоэлектронная спектроскопия рентгеновская

    Электронная спектроскопия для химического анализа (ЭСХА) Рентгеновская фотоэлектронная спектроскопия в вакуумной ультрафиолетовой области Оже-спектроскопия при возбуждении фото- [c.110]

    В катализаторе определяют содержание серебра, щелочноземельных металлов, щелочных металлов и таких вредных примесей, как тяжелые металлы, сера и галогены. Исследование физических свойств включает измерение поверхности методом БЭТ, обычно по криптону из-за малой площади поверхности. Для измерения пористости при контроле качества катализатора можно применять ртутную порометрию, несмотря на известную тенденцию серебра к амальгамированию, так как этот процесс сильно замедляется на окисленной поверхности. Состав поверхности катализаторов определяется современными методами, связанными с использованием высокого вакуума. Из них наиболее важны рентгеновская фотоэлектронная спектроскопия (РФЭС), масс-спектрометрия вторичных ионов (МСВИ) и электронная оже-спектроскопия (ЭОС). [c.240]


    Методы фотоэлектронной спектроскопии, в частности ЭСХА, имеют большое преимущество перед рентгеновским поглощением в силу гораздо более высокой чувствительности и разрешающей способности. Пики в фотоэлектронных спектрах относительно более узкие, четкие и интенсивные, их положение, т. е. и сдвиги могут быть измерены с высокой точностью. [c.138]

    МЕТОДЫ РЕНТГЕНОВСКОЙ И ФОТОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ [c.133]

    Рентгеновская фотоэлектронная спектроскопия (РФЭС) Сканирующая электронная микроскопия (СЭМ) Электронная оже-спектроскопия (ЭОС) [c.12]

    Для изучения поверхности электродов и явлений адсорбции используют оптические методы. Часть этих методов предназначена для исследования поверхностного слоя электродов, погруженных в раствор электролита и включенных в электрохимическую цепь. Таким образом получается информация о состоянии границы раздела фаз при заданном составе раствора и заданном потенциале электрода. К этим методам относятся эллипсометрический метод, а также методы обычного зеркального и неполного внутреннего отражения. Другая часть оптических методов изучения поверхности электродов требует удаления их из раствора, просушки и последующего исследования в глубоком вакууме. К этим методам относятся дифракция медленных электронов, Оже-спектроскопия, фотоэлектронная спектроскопия (рентгеновский микроанализ), сканирующая электронная микроскопия и некоторые другие методы. Эти методы дают информацию о микроструктуре поверхности твердых электродов, о химическом составе поверхностного слоя, изменение которого могло произойти в результате необратимой адсорбции тех или иных компонентов раствора, о составе и структуре возникших на поверхности окисных пленок. Однако для изучения обратимых адсорбционных явлений на электродах эти методы не подходят. [c.80]

    Представлены результаты исследований методами структурного анализа, рентгеновской фотоэлектронной спектроскопии, электронной микроскопии, ЭПР и магнитной восприимчивости активированных углеродных волокон (АУВ) с различной удельной поверхностью. [c.96]

    Энергия выше примерно шести электронвольт, необходимая для выброса электрона из молекулы, соответствует длине волны фотона в области вакуумного ультрафиолета (ВУФ) по электромагнитной шкале. Зигбан и сотрудники (Швеция) впервые применили в качестве источника для фотоэлектронной спектроскопии рентгеновское /(а-излучение 12], в то время как Тернер и др. [13] в Англии, Теренин и др. [14] в СССР первыми применили БУФ-фотоны. Использование рентгеновского излучения, обладающего более высокой энергией, позволило шведским ученым получать результаты, связанные с эмиссией электронов как с валентных, так и с внутренних оболочек ато- [c.16]


    Некоторые из физических методов особенно широко исполь зуются в химических лабораториях, например спектроскопия ЯМР и ЭПР, спектрополяриметрия (ДОВ и КД), и поэтому они рассмотрены подробнее. В то же время с помощью менее распространенных методов, таких, как рентгеновская и фотоэлектронная спектроскопия (ФЭС), ядерный квадрупольный резонанс, мессбауэровская спектроскопия, эффект Фарадея и др., получают также чрезвычайно важную информацию, поэтому некоторые из этих методов стали быстро развиваться, например ФЭС, и применение их химиками постоянно расширяется. Вообще ценность любого метода проявляется только тогда, когда он применяется для решения конкретных химических задач, и особенно возрастает при совместном использовании с другими методами. [c.4]

    В данной лекции проведен сравнительный анализ ряда физико-химических методов, применяемых для исследования структуры твердых катализаторов. Показано, что оптимальный набор методов определяется но основе анализа свойств, которые должны быть охарактеризованы для изучаемой системы. Для твердых катализаторов этот набор включает методы химического анализа, адсорбцию газов при низкой температуре, просвечивающую электронную микроскопию, селективную адсорбцию газов, рентгеновскую фотоэлектронную спектроскопию, рентгеновскую дифракцию. Обсуждаются физические принципы действия этих методов и тип получаемой информации. На примере исследования ряда монолитных катализаторов очистки выхлопных газов автомобильных двигателей продемонстрированы методические особенности практического применения выбранных методов. [c.9]

    Вся группа методов фотоэлектронной спектроскопии, как и методы рентгеновской спектроскопии (РФА и абсорбционной), могут [c.151]

    Метод рентгеновского микроанализа (фотоэлектронной спектроскопии) основан на том же принципе, что и метод Оже-спектроскопии, только для этого метода выбивание электронов с нижних уровней достигается облучением поверхности не электронами, а жестким рентгеновским излучением. Этот метод обладает большей разрешающей способностью по энергиям вторичных электронов, и благодаря этому при помощи рентгеновского микроанализатора можно установить валентное состояние одного и того же элемента в различных поверхностных соединениях. Однако из-за глубокого проникновения рентгеновских лучей в глубь вещества даже при малых углах облучения анализ захватывает относительно толстый поверхностный слой ( 5 нм). [c.85]

    Для твердых электродов, материал которых состоит из нескольких элементов, характерно отличие состава поверхности от состава объемной фазы, что может быть зафиксировано современными физическими методами (например, Оже- или рентгеновской фотоэлектронной спектроскопией). Эти методы позволяют определить состав поверхности в ходе послойного снятия материала в условиях ультравысокого вакуума. При использовании результатов этих методов надо учитывать возможность изменения состава поверхности при контакте с раствором электролита по сравнению с фиксируемым в вакууме. Как правило, на большинстве твердых поверхностей физические методы регистрируют наличие больших количеств углерода, который появляется, вероятно, при контакте с атмосферой. При анодной обработке в растворах электролитов углерод окисляется до СО. и десорбируется. [c.16]

    Частично из-за потребности в монохроматическом излучении возникли два раздела фотоэлектронной спектроскопии. Рентгеновская фотоэлектронная спектроскопия, сокращенно обозначаемая как РФС или ЭСХА (электронная спектроскопия для химического анализа), использующая рентгеновские лучи в качестве источника ионизирующего излучения, изучает в основном электроны оболочки (т.е. невалентные электроны). Создание этого метода приписывают Сигбану и сотр. [27]. В ультрафиолетовой фотоэлектронной спектроскопии (УФС) используют ультрафиолетовое излучение, имеющее более низкую энергию, и, таким образом, исследуют энергии связи валентных электронов. Обязанная своим развитием главным образом Тернеру и его сотрудникам [28], УФС предназначалась не только для измерения энергий связывания валентных электронов, но и для наблюдения за возбужденными колебательными состояниями молекулярного иона, образующегося в процессе фотоионизации. [c.331]

    Методы зондирующего воздействия обычно применяются для изучения поверхностей металлов. Здесь получены наиболее достоверные качественные и в значительной степени количественные результаты. При применении этих методов к химически и термически нестойким и изменчивым в сверхвысоком вакууме поверхностям возникают большие трудности как в проведении опытов, так и в интерпретации результатов. Тем не менее метод рентгеновской фотоэлектронной спектроскопии был применен для исследования некоторых из рассмотренных в этой лекции модифицирующих слоев. В частности, использовалось возбуждение образца излучением Ка алюминия (/lv = 1486 эБ) и изучалась эмиссия электронов. Полученный фотоэлектронный спектр состоит из ряда дискретных [c.110]


    РФС — рентгеновская фотоэлектронная спектроскопия [c.10]

    Поглощение квантов энергии рентгеновского и УФ-излучения может вызывать три процесса возбуждение электронов, разрыв связей и ионизацию атома или молекулы. В последнем случае под действием кванта энергии происходит выбивание электрона из атома и молекулы. В основе этого процесса лежит явление фотоэффекта, поэтому часто оба метода называют фотоэлектронной спектроскопией, а выбитые электроны — фотоэлектронами. [c.256]

    При фиксированной частоте v испущенные электроны имеют различные кинетические энергии. Откладывая число электронов, испущенных за данный промежуток времени, в зависимости от Т (или более непосредственно от I — hv—Тk) получим спектр испущенных электронов. При использовании гелия и других подобных источников электромагнитного излучения этот метод носит название ультрафиолетовой фотоэлектронной спектроскопии (УФС), в случае рентгеновских источников его называют рентгеновской фотоэлектронной спектроскопией (РФС) или ЭСХА электронная спектроскопия для химического анализа. [c.81]

    Здесь имеются в виду методы, которые основываются на явлениях фотоэффекта, получаемого при использовании монохроматического электромагнитного излучения, и вторичной электронной эмиссии. Собственно фотоэлектронной спектроскопией (ФЭС) называют метод, в котором вещество облучают в вакуумной УФ области электромагнитного спектра. Приоритет открытия явления эмиссии фотоэлектронов в газах под действием УФ облучения, положившего начало развитию метода ФЭС, принадлежит Ф. И. Вилесову (СССР). В рентгеноэлектронной спектроскопии (РЭС, или ЭСХА, что означает электронная спектроскопия для химического анализа) используют монохроматическое рентгеновское излучение. Создателем этого метода применительно к изучению поверхности твердых тел является шведский ученый К. Зигбан. Для возбуждения эмисии электропов может использоваться также электронный пучок, тогда говорят о методе индуцированной электронной эмиссии спектроскопии .  [c.134]

    Рентгеновская фотоэлектронная спектроскопия. Рентгеновская фотоэлектронная спектроскопия (РФЭС, ХР8), известная также как электронная спектроскопия для химического анализа (ЭСХА, Е8СА), весьма широко используется [c.297]

    Проведен синтез углеродных нанотруб мегодом термического газофазного разложения углеводородов. Структура нанотруб (размер, ориента11ия, дефектность, наличие примесей других элементов и т.д.) регулировалась изменением параметров синтеза (температура, исходные углеродсодержащие вещества, вид катализатора и т.д.). Проведено комплексное исследование полученных материалов методами электронной микроскопии, рентгеновской спектроскопии, фотоэлектронной спектроскопии и рентгеновской дифракции. [c.124]

    Если рентгеновские спектры испускания, поглощения и флуоресценции были известны и стали применяться еще в первой половине нашего века, то новые методы анализа и исследования веществ, которые можно условно объединить под общим названием — методы фотоэлектронной спектроскопии, разрабатывались лищь в 50-х и 60-х годах параллельно в СССР, Швеции, Англии и США. Их применение в химии началось в конце 60-х, а соответствующие серийные приборы появились лишь в 70-х годах и постоянно совершенствуются. [c.134]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    В настоящее время выпускаются специальные камеры для измерений в вакууме с последующим переносом электродов в электрохимические ячейки. Наиболее известная система для подобных измерений — ЭСКАЛАБ — выпускается фирмой VG S ientifi и используется для предварительного контроля поверхности электрода современными физическими методами исследования по-верности (Ожё-спектроскогтия. дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия и др.). Охарактеризованные этими методами поверхности затем подвергаются электрохимическому исследованию. [c.12]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    Методы вторично-ионной масс-спектрометрии, атомного зонда в полевом ионном микроскопе и полевой ионной масс-спектрохмет-рии разрушают поверхность. Методы же электронной Оже-спектро-скопии, рентгеновской фотоэлектронной спектроскопии, дифракции электронов низкой энергии и рассеяния медленных ионов не разрушают поверхность. При исследовании адсорбентов часто желательно применение методов, минимально возмущающих поверхность, а при использовании методов, требующих распыления вещества поверхности, необходимо обращать особое внимание на то, чтобы исследуемая поверхность не оказалась разрушенной, прежде чем будут получены этими методами сведения о ее состоянии и диффузии к ней атомов из глубины твердого тела. [c.110]

    Фотоэлектронную спектроскопию разделяют на рентгеновскую фотоэлектронную спектроскопию (РФС, или ЭСХА, т. е. электронная спектроскопия для химического анализа) и УФ-фотоэлектронную спектроскопию (УФЭС). [c.256]

    Согласно П. л. т., изменение электронного распределение в комплексном соед. по сравнению со свободными 013оли-рованными) Центр, атомом и лигандами наиб, существенно для валентной оболочки центр, атома, высших заполненных и низших незаполненных (виртуальных) орбиталей лигандов именно из этих орбиталей конструируются мол. орбитали комплекса в целом. Остальные орбитали центр, атома и лигандов считаются неизменными. Эксперим. результаты, получаемые методами фотоэлектронной и рентгеновской спектроскопии, а также расчеты с помощью неэмпирических методов квантовой химии свидетельствуют о том, что потенциалы ионизации с внутр. орбиталей комплексов и электронные распределения зависят от природы лигандов. Однако при описании электронного строения валентной оболочки комплекса этой зависимостью можно пренебречь. П. л. т. наиб, плодотворна для анализа комплексных соед., образованных (1- и /-элементами, в частности переходными металлами, ддя к-рых характерна близость расположения атомных уровней типа 3 /, 4 и 4р. [c.65]

    Для таких материалов очень важным является процесс микрофазо-вого расслоения, связанный с существенно различной поверхностной энергией кремнийорганических цепочек (21 дин/см) и изоциануратных узлов (35 дин/см). Процесс микрофазового расслоения был подтвержден методами рентгеновской фотоэлектронной спектроскопии, электронной микроскопии и динамического механтеского анализа. [c.286]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]

    Химия пов-сти твердых тел (см. подробнее Химия твердого изучение особенностей кристаллич. и электронной струггуры приповерхностных слоев твердых тел и закономерностей адсорбции на ней в-в как из газовой фазы, так и из объема тела. Развитие этой области связано с применением многочисл. новых методов исследования (см., иапр.. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия, Электронно-зондовые методы, Дифракционные методы, Эллипсометрия), к-рые дают сведения о разл. по толщине и площади приповерхностных слоях. [c.434]

    Важную роль в установлении М. р. играет исследование природы продуктов и промежут. в-в методами УФ, ИК и гамма-резонансной спектроскопии, ЭПР, ЯМР, масс-спект-рометрии, хим. поляризации ядер, электрохим. методами и т.п. Разрабатываются способы получения и накопления высокоактивных промежут. продуктов ионов, радикалов, возбужденных частиц с целью непосредственного изучения их реакц. способности. Для получения констант скорости тех стадий сложной р-ции, в к-рых участвуют высокоактивные частицы, информативно моделирование этих стадий в специальных ( чистых ) условиях, напр, путем проведения р-ций при низких т-рах (до 100-70 К), в ионном источнике масс-спектрометра высокого давления, в ячейке спектрометра ион-циклотронного резонанса и т.п. При изучении гетерогенно-каталитич. р-ций важно независимое исследование адсорбции всех участвующих в р-ции в-в на пов-сти катализатора, изучение спектров адсорбир. частиц в оптич. и радиочастотном диапазонах, а также установление их природы физ. и физ.-хим. методами (рентгеновская и У Ф фотоэлектронная спектроскопия, оже-спектроскопия, спектроскопия энергетич. потерь электронов и др.). [c.75]


Смотреть страницы где упоминается термин Фотоэлектронная спектроскопия рентгеновская: [c.154]    [c.202]    [c.264]    [c.277]    [c.299]    [c.111]    [c.30]    [c.507]    [c.654]    [c.740]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.316 , c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Применение фотоэлектронной, рентгеноэлектронной и рентгеновской спектроскопии для изучения валентных уровней

Рентгеновская фотоэлектрон нал спектроскопия РФЭС анализ поверхности мембран

Рентгеновская фотоэлектронная спектроскопия (РФЭС)

Рентгеновская фотоэлектронная спектроскопия замороженных растворов

Спектроскопия рентгеновская

Третий раздел. Методы рентгеновской н фотоэлектронной спектроскопии

Фотоэлектронная спектроскопи

Фотоэлектронная спектроскопия фотоэлектрон

Фотоэлектроны

Электронная спектроскопия для химического анализа (ЭСХА) или рентгеновская фотоэлектронная спектроскопия



© 2025 chem21.info Реклама на сайте