Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурный рентгеновский

    В 1912 г. М. Лауэ доказал, что рентгеновские лучи представляют собой электромагнитное излучение, длина волны которого примерно в 10000 раз меньше длины волны видимого света этим были созданы основы структурного рентгеновского анализа. [c.494]

    Совместно со структурным рентгеновским анализом физикохимический анализ позволил ученым в значительной степени познать химизм изучаемой системы, вникнуть во внутреннюю природу и химический состав металлов и их сплавов, установить свойства различных соединений и твердых растворов с точки зрения общих законов химии. [c.169]


    Исследователей, занимающихся проблемой лиофильности дисперсных систем, всегда интересовало, адсорбция скольких молекулярных слоев воды сопровождается заметным тепловым эффектом и какой вклад в суммарную интегральную теплоту смачивания вносит тепло, выделяющееся при адсорбции первого и последующих слоев воды. Выбор в качестве объектов исследования слоистых силикатов с расширяющейся структурной ячейкой, для которых характерно ступенчатое заполнение межслоевых промежутков, комплексное применение для их исследования рентгеновского, адсорбционного и термохимического методов анализа позволяет ответить на эти вопросы. [c.32]

    Радиометрические методы в последнее время стали применять для изучения структурных изменений граничных слоев жидкостей в поле твердой поверхности. К ним относятся прямые структурные методы дифракции рентгеновских лучей, радиационные методы и ИКС-, ЯМР-методы. [c.76]

    Распределение структурных пор при термообработке, изученное по малоугловому рассеянию рентгеновских лучей (МУР), представлено на рис. 2. Количество микропор у всех коксов с повышением температуры прокалки уменьшается. Переходные поры остаются почти на одном уровне, только у сернистого кокса в области температур десульфуризации их количество резко возрастает. Макропоры при 1900-2000 °С увеличиваются у игольчатых коксов. [c.118]

    Я еще питал слабую надежду на то, что сумею извлечь какую-то пользу из конференции по структуре биологических макромолекул. Хотя я ничего не знал о рентгеновском дифракционном методе, главенствовавшем в структурном анализе, я все же рассчитывал, что устные доклады [c.25]

    Однако Жан не мог сказать мне, верна или нет а-спираль Лайнуса. Он не был специалистом по рентгеновской кристаллографии и не мог профессионально оценить эту модель. Впрочем, некоторым его более молодым друзьям, занимавшимся структурной химией, а-спираль показалась очень изящной. А поэтому они склонялись к мнению, что Лайнус прав. Но это означало, что он снова решил проблему исключительной важности и первым высказал правильное предположение о структуре макромолекулы, играющей такую важную роль в биологии. Вполне вероятно, что он также разработал сенсационно новый метод, который окажется возможным применить и к нуклеиновым кислотам. Правда, Жан не запомнил никаких специальных приемов. Он мог лишь сообщить, что описание о-спирали должно быть опубликовано в ближайшее время. [c.29]

    Микроструктурный и рентгеновский анализ образцов показывает, что при длительной эксплуатации металла в условиях ползучести и цикличности наложенных пиковых нагрузок с уровнем напряжений, на два порядка превышающих допускаемые, происходят существенные структурные изменения. Изменяются фазовый состав и морфология вторичных фаз, происходит перераспределение легирующих элементов между различными фазами. Одновременно возрастает поврежденность металла микропорами. В связи с этим возникают два направления применения результатов. [c.319]


    Представлены результаты исследований методами структурного анализа, рентгеновской фотоэлектронной спектроскопии, электронной микроскопии, ЭПР и магнитной восприимчивости активированных углеродных волокон (АУВ) с различной удельной поверхностью. [c.96]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    Наличие или отсутствие структурных элементов в некристаллических полимерах обычно оценивается с помощью структурных методов по дифракции рентгеновских лучей, электронов и нейтронов, методами поляризационной оптической микроскопии, светорассеяния и радиоспектроскопии. [c.26]

    Наиболее детально развитие разрушения изучено прямыми структурными методами в твердых полимерах и главным образом в волокнах (инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, ядерный магнитный резонанс, рентгеновская дифракция на малые и большие углы, дифракция видимого света, электронная микроскопия, оптическая и электронно-микроскопическая фрактография и др.) [61 11.27]. [c.324]

    При структурных исследованиях кристаллических веществ используется взаимодействие рентгеновского излучения с кристаллом. При этом проникающие в кристалл рентгеновские лучи (с длиной волны I) всегда отражаются от атомов (ионов) кристаллической решетки под углом а в соответствии с формулой Вульфа — Брэгга  [c.110]

    Вся эта группа методов вместе с абсорбционной и эмиссионной спектроскопией в УФ и видимой областях, включая спектры люминесценции и в меньшей степени по распространенности рентгеновские спектры, используется в структурных исследованиях, в частности, позволяет получать информацию об электронной структуре вещества, а также в аналитических целях. [c.134]

    Аналогично тому как РЭС связана с рентгеновскими спектрами поглощения и рентгеновской флуоресценцией, метод ФЭС связан с электронными УФ спектрами поглощения и релаксационными процессами фотолюминесценции (флуоресценции и фосфоресценции) в УФ и видимой областях спектра (см. учебник Физические методы исследования в химии. Структурные методы и оптическая спектроскопия ). [c.140]

    Измеряемая интенсивность /(Н) рассеяния рентгеновских лучей монокристаллом пропорциональна квадрату модуля структурного фактора / (Н)  [c.219]

    Практически единственным методом, позволяющим определять абсолютную конфигурацию, является метод аномального рассеяния рентгеновских лучей. Благодаря автоматизации эксперимента существенно расширяется база структурных данных, [c.224]

    В этой связи возникает вопрос о смысле термина поверхностное предплавление , т. е, действительно ли на поверхности кристалла возникает жидкий или жидкоподобный материал при температурах на 20—30 °С ниже окончательной точки плавления (Hoffman, см. [84]). Может быть, более правильно этот эффект следует связывагь с интенсивным развитием ориентационного беспорядка или вращательного беспорядка за счет накопления очень большого (по сравнению с кристаллом) числа дефектов так, что в структурном (рентгеновском) отношении эти слои уже не дают острых, кристаллических дифракционных максимумов. Такие же выводы можно сделать из анализа данных по отжигу нормальных парафинов с числом углеродных атомов от Сзб и С94 для них характерны аналогичные [c.68]

    За последние годы много сведений о строении неорганических комплексов получено благодаря применению методов структурного рентгеновского анализа, измерения магнитной проницаемости, мёссбауэровской спектроскопии и т. д. Полученные данные о структуре комплексов соотнесены с данными об их химических свойствах с целью создания обоснованной теории в этой отрасли химии. [c.577]

    Рентгеновская трубка. Устройство структурной рентгеновской трубки типа БСВ (Безопасная в отношении рентгеновских лучей. Структурная, Водяного охлаждения) показано на рис. 82. В стеклянный баллон впаяны анод 2 и катод /. Анод окружен медным чехлом 3 с четырьмя отверстиями 4, закрытыми тонким слоем бериллия (2=4). В стеклянном баллоне против отверстий в чехле впаяны окна 5 из специального стекла гетан , слабо поглощающего рентгеновские лучи. Снаружи анодная часть трубки окружена латунным цилиндром 6 с четырьмя отверстиями для выхода лучей. Внутренняя поверхность цилиндра выложена свинцом. Анод трубки полый, что позволяет охлаждать его проточной водой. Маркировка трубки производится в зависимости от материала зеркала анода. [c.151]


    Устройство структурной рентгеновской трубки типа БСВ показано на рис. 81. В стеклянный баллон впаяны анод 2 и катод 1. Анод окружен медным чехлом 3 с четырьмя отверстиями 4, закрытыми тонким слоем бериллия (z=4). В стеклянном баллоне против отверстий в чехле впаяны окна 5 из специального стекла гетан, слабо поглощающего рентгеновские лучи. Снаружи анодная часть [c.143]

    Элекгрои — элементарная частица, обладаюн.1ая наименьшим существующим в природе отрицательным электрическим. зарядом (1,602- И)- Кл). Масса электрона равна 9,1095- 1Q-2 г, т. е. почти в 2000 раз меньше массы атома водорода. Было установлено, что электроны могут быть выделены из любого элемента так, они служат переносчиками тока в металлах, обнаруживаются в пламени, испускаются многими веществами ири нагревании, освещении или рентгеновском облучении. Отсюда следует, что электроны содержатся в атомах всех элементов. Ио электроны заряжены отрицательно, а атомы не обладают электрическим зарядом, они электро-нейтральны. Следовательно, в атомах, кроме электронов, должны содержаться какие-то другие, полол<ительно заряженные частицы. i Иначе говоря, атомы представляют собой сложные образобания, построенные из более мелких структурных единиц.  [c.57]

    С помощью рентгеновской кристаллографии можно в общем случае определить точный состав и расположение атомов почти в любой молекуле. Однако на сделанное выше заявление накладываются некоторые ограничения. Во-первых, молекула должна находиться в кристаллическом твердом состоянии, что приводит к геометрическим искажениям, возникающим при упаковке ее с соседними молекулами. Во-вторых, система не должна подвергаться фотохимическому разложению при облучении ее рентгеновским излучением в течение дня [1]. В-третьих, интересующая нас система должна образовывать подходящие для кристаллографического исследования кристаллы, исключающие две проблемы, наиболее распространенные при решении структурных задач двойнико-вание и разупорядочивание [2]. В-четвертых, число атомов, положения которых следует определить, не должно быть слишком большим. [c.360]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    При изучении структурных превращений в процессе термообработки коксы прокаливались в силитовых печах при стандартных условиях (1300°С, 5 часов), в печи Таммана с изотермической выдержкой в течение 2 ч и в среде вакуума в камере высокотемпературной рентгеновской установки УВД-2000. Съемка дифрактограмм проводилась на дифрактометрах ДРОН-2,0, ДРОН-3,0 с СиКаИзлучением рентгеновской трубки и малоугповой рентгеновской установке КРМ-1. Ряд исследований проводился с использованием метода радиального распределения атомной плотности (р.р.а.). [c.117]

    Благодаря современным методам анализа установлены способы построения структурной единицы смолисто-асфальтеновых веществ различных нефтей [И, 119]. Согласно данным рентгеноструктурного анализа надмолекулярная структура асфальтенов состоит из 5—6 слоев полйядерных двухмерных пластин общей толщиной 1,6—2,0 нм. Размеры надмолекулярных структур, определенные рентгенографически, имеют заниженные значения по сравнению с таковыми, найденными электрономикроскопически, что, вероятно, связано с включением при определении размеров по электронным микрофотографиям алифатической части молекул, в то время как рентгеновские лучи рассеиваются только упорядоченной частью или ядром молекулы. [c.30]

    Методом рассеяния рентгеновского излучения под малыми углами установлено [123], что коллоидная структура битумов состоит из набора частиц квазисферической формы с размерами от 2,3—3,0 до 20—40 нм. Число частиц наименьшего размера на 4—6 порядков превышает число частиц больших размеров, что дает основание считать частицы с размерами 2,3—3,0 нм основными структурными элементами коллоидной структуры битумов. [c.31]

    Уравнение Дебая применяется только для газов и простых жидкостей. Уссвершенствовапная модель Кирквуда [471 дает представление о дипольной молекуле и о ближайшем к ней слое соседних молекул как о структурной единице, статистические данные о которой известны из рентгеновских исследовании. Эта модель находится в хорошем соответствии с данными эксперимента. Она основана на представлении о том, что дипольные моменты локализованы в группах молекул. Последние имеют тенденцию к потере своей способности к ориентационным перемещениям в конденсированных системах в результате ассоциации и пространственных затруднений. УргЕнение Кирквуда имеет вид  [c.44]

    Электронно - микроскопическими исследованиями было установлено, что для всех образцов характерен -один основной структурный элемент - углеродные глобулы размером 10 нм, внутри когоры.ч методами просвечивающей электронной микроскопии и малоуглового рентгеновского рассеяния было установлено наличие пустот. Также была установлена схож есть искажения графитоподобных слоев шунгитового углерода (ШУ) и фуллеренов. Основываясь на этих данных,авторы предложили фуллереноподобиую структуру ШУ. Для доказательства и обоснования предложенной структуры использовали методику последовательной экстракции фуллеренов С-60 и С-70 этанолом и гексаном.. Анализ экстракта показал присутствие фуллеренов С-60 и С-70 в количестве 0.0001 %. На основании этого была предложена фуллеренная модель щунгитового углерода [28]. [c.24]

    Вся структурная организация белков четвертичная, третичная, вторичная) может быть разрушена внешнидш воздействиями до первичной структуры полипептида - процесс денатурации. Денатурация белков происходит под действием экстремальных значегоп pH растворов, УФ-света, рентгеновских лучей, высоких давлений, повышенной температуры, физических воздействий (например, ультразвука). [c.273]

    Использовалась элементная сера — попутный продукт переработки нефти, исследованы пять (исходный и четыре механически обработанных) образцов. Седиментационный анализ показал, что измельчение завершается на начальных (первые два образца) этапах обработки, в результате основная часть порошка (95%) имела размеры в интервале от 1-годо Юмикрон. Рентгенофазовый анализ показал на существенные изменения структурных характеристик материала на всех этапах механической обработки наблюдались сдвиги рентгеновских линий, свидетельствующие о наличии однородной упругой деформации макроскопических областей, разупорядочении атомов кристаллической решетки, а следовательно, к одинаковому сдвигу атомов от их нормального, что проявляется в изменении периодов решетки. Наряду со сдвигом линий зафиксировано уширсние линий, указывающее на флуктуацию межплоскостных расстояний и постоянных решетки вокруг некоторого среднего значения. Оба вида структурных изменений могут рассматриваться как искажения решетки, служить мерой несовершенства структуры твердых веществ и в конечном итоге привести к изменению растворимости и реакционной способности серы. [c.104]

    Разработан комплекс методов оценки молекулярной и надмолекулярной структуры коксов. Методы основаны на дифракции рентгеновских лучей в области больших и малых углов. Комплекс позволяет оценивать размеры кристаллитов, микроискахени , количество упорядоченного углерода, степень упорядоченносФи структуры, термический коэффициент расширения решетки, анизотропию термического расширения, распределение структурных пор по размерам и другие параметры тонкопористой структуры. Показано значительное разлшчие в тонкой структуре, характеризуемой перечисленными параметрами, дяя игольчатых и изотропных коксов. Библ.II,таблЛ. [c.164]

    Надмолекулярная структура и структурная пористость изучались на малоугловой рентгеновской установке KPM-I. Получение кривых малоуглового рассеяния осуществлялось в автоматическом режиме съемки в области сканирования 5Й°,цри шаге сканирования I . Экспозиция в каждой точке сканирования составляла 100с. [c.106]

    Для каждого кокса были получены по три кривых интенсивности малоуглового рассеяния рентгеновского излучения.Образец кокса о размером часииц О,1-0,2 мм уплотнялся в цилиндрическую кювету с лавсановыми окнами.Глубина кюветы 2, диаметр 10 мм. Расчет размеров структурных пор и характеристик надмолекулярной структуры проводился на ЭВМ М-4030 после предварительного усреднения интенсивностей, полученных цри повторных измерениях одного и того же образца,и сглаживания кривых рассеяния.Наименьший радиус пор,определяемый по малоугловому рассеянию ii 2 нм. [c.106]

    Особое место занимают исследования коллоидной структуры нефтяных дисперсных систем методом рассеяния рентгеновских лучей под малыми углами [67 — 70]. Указанный метод проявляет чувствительность к полидисперсности и форме частиц исследуемых объектов, не зависит от их оптической плотности и многокомпонетнос-ти. Однако этим методом можно фиксировать только размеры ядра структурного образования, не включая сорбционно-сольватный слой, что связано с незначительным расхождением в значениях электронных плотностей сольватной оболочки и дисперсионной среды. Кроме этого, метод малоуглового рассеяния позволяет получать достаточно воспроизводимые результаты в случае слабоструктурированных систем, когда расстояние между соседними структурными образованиями намного превышает их размеры. С помощью рассматриваемого метода изучено [71] распределение по размерам структурных образований в нефтяных профилактических средствах. Показано, что в этих системах размеры частиц дисперсной фазы составляют от 1,7-3 нм до 40 нм, причем основу коллоидной структуры составляют частицы меньших размеров. [c.84]

Рис. 7-12. Полюсные фигуры для структурно неориевтирован-ных и ориентирован-ных образцов ПУ [7-2]. <р — угол между нормвг лью к плоскости, соответствующей линии (002), и нормалью к плоскости отложения. hv) — относительное изменение интенсивности рентгеновской линии (002) в зависимости от угла if. Рис. 7-12. <a href="/info/1055149">Полюсные фигуры</a> для структурно неориевтирован-ных и ориентирован-ных образцов ПУ [7-2]. <р — угол между нормвг лью к плоскости, соответствующей линии (002), и нормалью к плоскости отложения. hv) — относительное изменение <a href="/info/860466">интенсивности рентгеновской линии</a> (002) в зависимости от угла if.
    Основные носители парамагнетизма содержатся в асфальтенах и почти не содержатся в маслах, смолы по их содержанию занимают промежуточное положение. Соединения парафинового ряда способствуют уменьшению числа свободных радикалов. По мере углубления окисления и увеличения молекулярного веса окисленных битумов интенсивность сигналов ЭПР возрастет, что объясняется ростом содержания асфальтенов и числа свободных радикалов. Если содержание свободных радикалов в окисленном битуме БН-П принять за 100%, то в битумах БН-Ш и БН-1У оно составляет соответственно 170 и 180%[91]. Между температурой размя1-че-ния и интенсивностью сигналов ЭПР для дорожных окисленных и компаундированных битумов, полученных ич Усть-Балыкской нефти, установлена прямая зависимостъ [92]. На основании рентгеновского структурного анализа было показано, что асфальтены и карбены, выделенные из природных асфальтов, являются кристаллическими веществами. Некоторые из них имеют признаки цепной ориентации, фафитовая структура у них отсутствует. [c.36]

    В методе вращения рентгенограмму получают при постоянной (характеристической) длине волны излучения анода рентгеновской трубки от монокристалла, вращающегося вокруг какой-либо оси. Съемку осуществляют в камерах вращения, колебания и рентгено-гониометрах с движущейся пленкой. Метод этот применяют для полного определения структуры вещества (параметры элементарной ячейки, ее тип, симметрия, крординаты атомов в элементарной ячейке.) не только в простых, но и в сложных случаях. Это наиболее совершенный метод структурного исследования кристаллических веществ. [c.355]

    Рентгеновские исследования комплексов химотрипсина с субстратоподобными ингибиторами сыграли принципиальную роль в установлении структурных предпосылок каталитической функции его активного центра (см. 2 этой главы). Однако для выяснения динамических аспектов действия активного центра оказались особенно плодотворными подходы химической кинетики (см. 5,6 этой главы). Успехи кинетических исследований были во многом предопределены открытием М. Бергмана и Д. Фрутона и позднее Г. Нейрата и их сотрудников, которые установили, что химотрипсин способен гидролизовать не только сложные белковые молекулы, но также и простые низкомолекулярные синтетические субстраты (амиды, сложные эфиры и др.) [20]. [c.127]

    При использовании монохроматического рентгеновского луча Применяют такие методы, как рентгенографирование в расходящемся луче, когда точечным источником монохроматического излучения освеш,ают монокристалл, или метод враш,ения и колебания монокристалла. В последнем случае для получения рентгенограммы вращения небольшой монокристалл освещается параллельным монохроматическим лучом, а кристалл при этом вращается вокруг оси, перпендикулярной к первичному пучку. Измерив интегральную интенсивность отражений и определив Набор структурных амплитуд, можно расшифровать атомную структуру кристалла. [c.153]

    Аппарат ДР0Н-1(ДР0И-1,5). Рентгеновский дифрактометр общего назначения. Употребляется для проведения широкого круга структурных и фазовых ис- [c.75]

    Аппарат УРС-50ИМ. Рентгеновский дифрактометр для структурного, фазового и других видов анализа, позволяющий исследовать поликристаллические (в том числе, крупнозернистые) образцы, монокристаллы, определять преимущественную ориентировку кристаллов (текстуру) и т. д. В аппарате используется рентгеновская трубка БСВ-б с линейным фокусом. Максимальное напряжение 50 кВ, максимальный ток 12—14 мА. [c.76]


Смотреть страницы где упоминается термин Структурный рентгеновский: [c.159]    [c.480]    [c.236]    [c.402]    [c.175]    [c.70]    [c.201]    [c.70]   
Химический энциклопедический словарь (1983) -- [ c.506 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.506 ]




ПОИСК







© 2024 chem21.info Реклама на сайте