Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стереохимия у ненасыщенного углерода

    На примере хлорвинильных металлоорганических соединений Реутовым и Белецкой была изучена реакция электрофильного замещения в ряду непредельных соединений. При этом удалось осуществить мономолекулярное электрофильное замещение 5 1 атома металла у олефинового атома углерода на иод в высоко ионизирующем растворителе — диметилсульфоксиде. Конфигурация исходных и конечных продуктов в ходе замещения не изменялась. Это позволило сделать вывод, что стереохимия реакций у олефинового атома углерода имеет иной характер, чем замещение 5 1 у насыщенного атома углерода свободная пара электронов у ненасыщенного атома углерода способна закреплять конфигурацию  [c.233]


    Кинетика и стереохимия реакций присоединения галоидоводородов по кратным углерод-углеродным связям. Изучение кинетики реакций присоединения галоидоводородов к этиленовым и ацетиленовым соединениям показывает, что эти реакции не представляют собой простых бимолекулярных процессов (одна молекула ненасыщенного соединения реагирует с одной молекулой галоидоводород,а), а протекают с участием третьей молекулы (молекулы галоидоводорода). Этот вывод подтверждается тем, что скорость реакции присоединения в больн ей степени зависит от концентрации галоидоводорода, чем от концентрации непредельного соединения. [c.248]

    Вернемся к уже цитированной работе Полинга, где он исследует также гибридизацию орбит ненасыщенного атома углерода. Согласно классической стереохимии в органических соединениях с двойными связями некоторые атомы углерода имеют только по три связи, лежащие в одной плоскости и образующие друг с другом углы, приближенно равные 120°. Предположим, что эти связи лежат в плоскости ху, тогда имеются три функции [c.216]

    Если же вращение вокруг углерод-углеродной связи ограничено и водородные атомы, способные к отрыву, не эквивалентны друг другу, то становится возможным определить стереохимию реакции. Это можно сделать на примере ненасыщенного галогенопроизводного. Хлормалеиновая (Н и С1 в с-положе-нии) и хлорфумаровая кислоты (Н и С1 в гране-положении) при обработке основанием образуют ацетилен-дикарбоновую кислоту, но хлорфумаровая кислота реагирует Б 50 раз быстрее  [c.103]

    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]


    Первоначальные представления о размере валентных углов, образуемых атомом углерода, насыщенным и ненасыщенным, подсказывались уже вант-гоффовской моделью этого атома (1874). В 1928 г. Полинг ввел понятие о гибридизации и показал расчетным путем как эта гибридизационная модель позволяет объяснить образование тетраэдрических и других углов, предсказываемых классической стереохимией. Это же представление о гибридизации позволило не только объяснить отклонения от ненапряженных валентных углов, но и вычислить, хотя бы в качественном приближении такие отклонения, как например, отклонения от углов НСН в различных по величине кольцах циклоалканов (Килпатрик и Спитцер, 1946). Как было сказано, Коулсон (1947) предложил характеризовать степень гибридизации данной орбитали выражением в + щричем Я соответствует [c.89]

    Рассмотрим действие конформационных факторов на реакционную способность ненасыщенных систем. Упомянем два правила, предсказывающих стереохимию продуктов некоторых реакций присоединения по карбонильной группе, а именно правило Крама [107, 108] и правило Прелога [111] . Правило Крама позволяет предсказать, какой из стереоизомеров будет образовываться предпочтительно в кинетически контролируемых реакциях присоединения к карбонильной группе соединений типа LMiS OR (присоединение реактива Гриньяра, восстановление гидридами, но не каталитическое гидрирование). Асимметрический атом углерода поворачивается так, чтобы карбонильная группа была фланкирована двумя наименьшими заместителями при этом атоме М — средний и S — наименьший) и чтобы наибольшая группа L) занимала заслоненное положение по отношению к R. Подход реагента осуществляется со стороны наименьшей группы S, как показано на рис. 1-24. Модель, изображенная на рис. 1-24, неприменима в тех случаях, когда одна из грунп, замещающих асимметрп- [c.43]

    Первоначальные представления о размере валентных углов, образуемых атомом углерода, насыщенным и ненасыщенным, подсказывались уже вант-гоффовской моделью этого атома (1874). В 1928 г. Полинг ввел понятие о гибридизации и показал расчетным путем как эта гибридизационная модель позволяет объяснить образование тетраэдрических и других углов, предсказываемых классической стереохимией. Это же представление о гибридизации позволило не только объяснить отклонения от ненапряженных валентных углов, но и вычислить, хотя бы в качественном приближении такие отклонения, как например, отклонения от углов НСН в различных по величине кольцах циклоалканов (Килпатрик и Спитцер, 1946). Как было сказано, Коулсон (1947) предложил характеризовать степень гибридизации данной орбитали выражением я -Ь Яр, причем % соответствует определенным валентным углам так, Я = / 2 и /З отвечает углам, образуемым атомом углерода и равным соответственно 180°, 120° и 109° 28. Имевшиеся к тому времени экспериментальные данные указывали на то, что угол НСН в этилене равен 116°, а следовательно, Я 1/2, что отличалось от результатов расчета Полинга, явившихся в свое время поддержкой концепции гибридизации. В квантовой химии вслед за Коулсоном корреляция между значением К и валентными углами была использована в основном для расчета первой величины, которая, как было уже отмечено, затем служила для оценки длин связей, образуемых атомом углерода. [c.89]

    Направление научных исследований кинетика и механизм неорганических окислительно-восстановительных реакций кинетика и механизм органических реакций в растворе получение и свойства никсль-кобальтовых пленок низковалентные состояния переходных металлов каталитическое окисление окиси углерода гомогенное разложение перекиси водорода в газовой фазе спектры поглощения и стереохимия ди- и трифенилметановых красителей рентгеновская кристаллография координационных соединений ЯМР и ИК-спектроскопия металлорганических соединений синтез ненасыщенных углеводородов, аналогов тиамина и фармакологически активных веществ реакции металлорганических соединений кислотный алкоголиз эпоксидов. [c.259]

    Исследованы кинетика, стереохимия и механизм реакции симметризации ртутноорганических соединений и обратной реакции. Несмеяновым, Реутовым и сотр. найдено, что симметризация оптически активных ртутноорганических соединений — диастереомеров /-ментиловых [1—4] и этилового [4] эфиров а-броммеркурфенилуксусной кислоты под действием аммиака — является реакцией второго порядка (как по RHgX, так и по NHg [5]) (8 2-механизм) и протекает с сохранением конфигурации у асимметрического атома углерода, затрагиваемого в ходе реакции, на основании чего ими высказано [1—3] правило о сохранении конфигурации при реакциях электрофильного замещения у насыщенного углеродного атома (ср. правило о сохранении конфигурации у ненасыщенного атома углерода при реакциях электрофильного и гомолитического замещения, выведенное на основании изучения поведения квазикомплексных ртутноорганических соединений см. гл. VI). [c.239]

    Внутрисферный перенос электрона/механизм с участием радикальных пар в клетке. При осуществлении механизма внут-рисферного переноса электрона [реакция (5.49)] вначале происходит координация органического галогенида к металлу. Электронный перенос затем приводит к радикальной паре в клетке растворителя, состоящей из Н и металл-галогенидного комплекса. Коллапс радикальной пары дает продукт окислительного присоединения, тогда как выход из клетки даст свободные радикалы К , из которых могут получаться побочные продукты. По этому механизму образуется тот же основной продукт (К——X), что и по механизму 5ы2, который отличается от последнего лишь ожидаемой стереохимией углерода (рацемизация вместо обращения конфигурации). Для реализации этого механизма необходим координационно ненасыщенный металл, способный претерпевать формальное двухэлектронное окисление. [c.303]



Смотреть страницы где упоминается термин Стереохимия у ненасыщенного углерода: [c.224]    [c.409]    [c.168]    [c.4]    [c.139]   
Механизмы реакций металлорганических соединений (1972) -- [ c.178 , c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Стереохимия



© 2025 chem21.info Реклама на сайте