Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганические окислительно-восстановительные реакции

    В последнее десятилетие значительное внимание уделяли разработке теоретических моделей реакций переноса электрона в растворах. Из всех теорий, предложенных для описания скоростей таких реакций, теория Маркуса [12] оказалась наиболее пригодной при получении количественных корреляций и для предсказания скоростей неорганических окислительно-восстановительных реакций. Подробно ознакомиться с этой теорией можно по обзору Маркуса [12]. Однако в этой главе кратко излагаются некоторые из ее выводов, относящиеся непосредственно к обсуждению рассматриваемых процессов. [c.272]


    Были предложены следующие полуэмпирические правила, характеризующие протекание неорганических окислительно-восстановительных реакций [39]  [c.105]

    Направление научных исследований расчет молекулярных орбит электронная корреляция применение квантовой механики к изучению проблем в области валентности, спектроскопии и межмолекулярных сил ИК-спектры и ЯМР высокого разрешения кинетика и механизм неорганических окислительно-восстановительных реакций реакционная способность связи углерод — металл амиды металлов и неметаллов кинетика реакций в газовой фазе, реакций гидрирования и полимеризации неорганические полимеры органические соединения бора, фосфора, кремния, германия, олова влияние у-излучения на металлорганические соединения калориметрия металлорганических соединений рентгеноструктурный анализ природных веществ химия производных ацетилена, алкалоидов, терпенов и стероидов биосинтез метаболитов плесени моделирование системы энзимов. [c.273]

    Последовательности ферментативных окислительно-восстановительных реакций лежат в основе клеточного метаболизма энергии. Энергия, освобождаемая при окислении восстановленных органических или неорганических соединений, запасается с различной эффективностью в виде таких удобных форм, как АТР, мембранные потенциалы или восстановленные коферменты. Механизм действия ферментов, катализирующих процессы электронного переноса, активно изучается, что связано с их вал<ной физиологической ролью. [c.399]

    Осадителями могут служить как неорганические, так и органические вещества. Органическими осадителями могут быть вещества, образующие труднорастворимые соли, комплексные соединения, а также вещества, участвующие в окислительно-восстановительных реакциях. [c.166]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]


    По сравнению с предыдущим изданием сборник задач переработан и дополнен. В частности, исключена тема Основные классы неорганических соединений , введена новая — Окислительно-восстановительные реакции . Заново пересмотрены условия многих задач часть из них исключена, часть заменена новыми. [c.3]

    Мы сочли необходимым ввести в курс понятия об энтропии 5 и ее изменении А5 и об изменении энергии Гиббса АО, так как твердо уверены в том, что нельзя излагать химию в вузе, опираясь только на понятие о тепловых эффектах АН. С другой стороны, мы отдавали себе отчет в том, что на первом курсе информация о величинах АО и Д5 не может быть ни полной, ни строгой она в доступной форме должна передавать лишь главное, давая общую ориентировку. Приучить студентов с первого курса пользоваться энтальпийными и энтропийными характеристиками — это означает не только привить им навыки изучения с общих позиций самых различных процессов (химическое взаимодействие, растворение и т. д.), но и подготовить их к постоянному применению этих фундаментальных характеристик — вначале на материале неорганической, а затем аналитической и органической химии. В курсе физической химии эти представления получат дальнейшее развитие, уточнение, детализацию, будут поставлены на прочный математический фундамент. Поэтому, в частности, при рассмотрении окислительно-восстановительных реакций уделено внимание не только составлению уравнений, т. е. чисто формальной стороне, но и решению вопроса о направлении этих процессов, [c.5]

    Особенно широко используется понятие степень окисления при изучении окислительно-восстановительных реакций —..весьма обширного класса химических процессов, в которых изменяются степени окисления элементов. Эти процессы подробно рассматриваются в курсе неорганической химии. Здесь отметим только, что в процессе окисления происходит увеличение степени окисления, а в процессе восстановления — уменьшение степени окисления. Поэтому вещества, в которых происходит увеличение степени окисления элемента, называются восстановителями, а вещества, в которых происходит уменьшение степени окисления элемента, называются окислителями. Ё высшей степени окисления атомы проявляют только окислительные свойства, в низшей степени окисления — только восстановительные свойства. В промежуточной степени окисления атом может быть и окислителем, и восстановителем. [c.79]

    Можно указать также еще ряд явлений неорганической химии, таких, как гидролиз солей, окислительно-восстановительные реакции, растворение аммиака, гидразина, гидроксиламина в воде, обычная трактовка которых не только далека от совершенства, но порой противоречит как опытным данным, так и современным теоретическим представлениям о природе молекул. [c.6]

    Задача данного пособия — закрепить основные теоретические положения неорганической химии и научить студе( тов использовать химические уравнения для осмысленного восприятия важнейших химических процессов. В пособии рассматриваются обменные и окислительно-восстановительные реакции. Окислительно-восстановительные реакции имеют большое теоретическое и практическое значение. Студенты обычно затрудняются при составлении уравнений этих реакций. Поэтому этот раздел излагается более подробно. [c.3]

    Окислительно-восстановительные реакции с участием органических соединений . Органические вещества обычно представляют собой газы, жидкости или низкоплавкие твердые вещества (от комнатной гемпературы до 400° С). Напротив, большая часть неорганических соединений — твердые вещества, плавящиеся при высоких температурах. [c.136]

    Окислительно-восстановительные реакции, протекающие с участием органических веществ, так же как и неорганических, зависят от реакционной способности окислителя и, восстанови- [c.167]

    При составлении уравнений окислительно-восстановительных реакций, протекающих с участием органических веществ, в простейших случаях можно применить степень окисления. Так, приведем уравнение реакций, в которых коэффициенты могут быть определены по тому же правилу, что и для окислительно-восстановительных реакций в неорганической химии  [c.169]

    Окислительно-восстановительные реакции. Все процессы неорганической химии можно разбить на два типа а) идущие без изменения валентности реагирующих элементов и б) идущие с изменением валентности. К первому из них относятся различные случаи обмена атомами или ионами, уравнения которых обычно весьма просты. Ко второму типу относятся реакции вытеснения (V 8) и ряд иных, часто очень сложных химических процессов. Для быстрого и правильного составления уравнений таких реакций необходимо овладеть специально разработанной методикой. [c.285]

    Растворы. Электролитическая диссоциация Основные классы неорганических соедине-йий и их номенклатура Окислительно-восстановительные реакции [c.7]

    Органические вещества могут участвовать в протолитических, окислительно-восстановительных реакциях, а также реакциях осаждения и комплексообразования, что обусловлено химическими свойствами их функциональных групп. В связи с этим для количественного титриметрического анализа органических соединений используют в основном те же методы, что и для анализа неорганических соединений. Кроме того, для целей анализа используют реакции конденсации, замещения водорода, введения нитро- или нитрозо-групп, присоединения, свойственные органическим веществам. В некоторых случаях в процессе титрования сочетаются несколько типов взаимодействий, например окисление— восстановление, замещение водорода и присоединение, кислотно-основное взаимодействие и присоединение и т. п. [c.213]


    Полимеры этого типа, так же как и неорганические соединения со свойствами полупроводников, являются катализаторами различных окислительно-восстановительных реакций, причем имеются данные, что их каталитическая активность связана с концентрацией парамагнитных частиц в полимере. [c.412]

    Известны органические и неорганические фотохромные системы с переносом заряда или окислительно-восстановительными превращениями. Типичная обратимая фотохимическая окислительно-восстановительная реакция происходит в смеси иодида ртути и иодида серебра  [c.255]

    Окислительно-восстановительные реакции — самые распространенные и играют большую роль в природе и технике. Они являются основой жизнедеятельности. С ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую—в гальванических элементах и аккумуляторах. Они же лежат в основе мероприятий по охране природы. Поэтому эти реакции преобладают и в школьном курсе неорганической химии. [c.141]

    Химический анализ неорганических веществ обычно осуществляют в водных растворах. В подавляющем большинстве случаев при этом используют ионные реакции. Взаимодействие между противоположно заряженными ионами протекает практически мгновенно. Однако реакции между одинаково заряженными ионами, а также между ионами и молекулами во многих случаях оказываются медленными. Так, например, медленно протекают многие окислительно-восстановительные реакции. [c.39]

    Окислительно-восстановительные реакции. Все процессы неорганической химии можно разбить на два типа а) идущие без изменения валентности реагирующих элементов и б) иду- [c.206]

    Из многочисленных путей образования короткоживущих радика--лов наиболее важными являются фотохимическое и термическое расщепление связей, окислительно-восстановительные реакции с переносом одного электрона (вызываемые неорганическими ионами) и электролиз. [c.280]

    Осадителями в осадочной хроматографии могут служить как неорганические, так и органические вещества. При этом органическими осадителями могут быть вещества, образующие нормальные соли, комплексные соединения, адсорбционные органические соединения, вещества, участвующие в окислительно-восстановительных реакциях. [c.118]

    В органической химии, так же, как в неорганической, большинство окислительно-восстановительных реакций необратимо. Имеются в виду реакции окисления углеводородов до спиртов, альдегидов и карбоновых кислот, а также реакций, идущих с окислительным расщеплением С-С-, С=С-и С- С-связей. К таким реакциям закон действующих масс — основной закон химической термодинамики — неприменим. Обратимыми реакциями этого типа могут быть окислительно-восстановительные реакции функциональных групп (-8Н, -8=0, -80г-, -N0, -ЫОз и т. п.), которые, в принципе, мало отличаются от реакций соответствующих неорганических соединений и здесь не рассматриваются. [c.133]

    Органические реакции так же, как и неорганические, могут быть классифицированы по общим признакам на реакции переноса единичного электрона (окислительно-восстановительные реакции), электронных пар (реакции комплексообразования), протона (кислотно-основные реакции), переноса атомно-молекулярных частиц без изменения числа связей (например, [c.183]

    При окислительно-восстановительных реакциях в системе возникают свободные радикалы, которые могут инициировать полимеризацию. Чаще всего в качестве окислительных агентов используют органические или неорганические перекисные соединения, а в качестве восстановительных агентов ионы металлов, находящихся в низшем валентном состоянии, либо неметаллические, легко окисляемые соединения (например, некоторые серосодержащие соединения). Можно использовать также системы из трех компонентов, а именно перекисного соединения, иона металла (например, Ре +) и другого восстановителя типа кислого сульфита. В последнем случае ионы трехвалентного железа, получаемые в результате окислительно-восстановительной реакции между Ре и перекисным соединением, вновь восстанавливаются кислым сульфитом до Ре2+, поэтому для реакции достаточно очень малого количества ионов Ре в системе. [c.133]

    Аналогичные затруднения возникают при рассмотрении большинства неорганических окислительно-восстановительных реакций. Несмотря на это, оказывается возможным составить такие стехиометрические уравнения, чтобы суммарная реакция представляла собой сложную последовательность нескольких стадий. На основе исследования механизма реакции можно сделать вывод об истинной последовательности этих стадий (или их параллельном протекании). В рассмотренном выше примере можно было бы предположить, что образование О2 обусловлено двумя электронными переходами, например ООН- + МПО4- -> МПО42- -Ь НОа [c.149]

    Направление научных исследований кинетика и механизм неорганических окислительно-восстановительных реакций кинетика и механизм органических реакций в растворе получение и свойства никсль-кобальтовых пленок низковалентные состояния переходных металлов каталитическое окисление окиси углерода гомогенное разложение перекиси водорода в газовой фазе спектры поглощения и стереохимия ди- и трифенилметановых красителей рентгеновская кристаллография координационных соединений ЯМР и ИК-спектроскопия металлорганических соединений синтез ненасыщенных углеводородов, аналогов тиамина и фармакологически активных веществ реакции металлорганических соединений кислотный алкоголиз эпоксидов. [c.259]

    Подобно тому как во многих случаях возникают свободные радикалы, так для неорганических ионов должны существовать промежуточные валентные состояния. Многие результаты кинетических исследований окислительно-восстановительных реакций наталкивают на предиоложение о существовании таких нестабильных валентных состояний неорганических ионов. Один из классических примеров этого типа реакций дает медленная реакция ЗРе " + + 8п . Реакция идет очень медленно в растворе [c.508]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]

    Специальные окислительно-восстановительные индикаторы. Неорганическими окислительно-восстановительными индикаторами являются системы /Ь и Ь/ГС . Первую систему, для которой о=0,535 В, можно применять для индикации реакции Се(1У)+5п(И). Избыток Се(1У) определяют по появлению синей окраски крахмала. Монохлорид иода служит для индикации конца реакций, протекающих в сильнокислой среде, например при титровании раствором иодата. В восстановительной среде из монохлорида иода выделяется свободный иод, тотчас же вьгзывающий обесцвечивание небольшого избытка окислителя. Иод извлекают тетрахлоридом углерода или хлороформом. [c.170]

    Степень окисления элементов при неорганических реакциях меняется потому, что чаще всего их атомы отдают или присоединяют электроны, образуя вещества с ионными связями. Принято считать, что в окислительно-восстановительных реакциях всегда происходит присоединение или отдача электронов атомами элементоБ-Окисление — это процесс отдачи электронов атомом, молекулой 1ли ионом. Если атом отдает свои электроны, то он приобретает положительный заряд, например  [c.189]

    Лучшие неорганические катализаторы по своей активности уступают ферментам в десятки тысяч и более раз. Например, окислительно-восстановительные реакции в организмах человека и животных протекают при участии ферментов, содержащих в качестве катализогена ион железа. Для осуществления тех же реакций путем неорганического катализа человеческому организму понадобилось бы около 10 т металлического железа. В то же время общее содержание указанного элемента в организме человека около [c.142]

    С помощью окислительно-восстановительных реакций получают металлы, органические и неорганические соединения, проводят очистку различных веществ, природных и сточных вод, газовых выбросов электростанций и заводов и т. п. Рассмотрим в качестве примера получение металлических покрытий на поверхностях металлических и неметаллических изделий химическим способом, основанным на реакциях окисления — восстановления. При таком способе изделие помещается в раствор, содержащий ионы металла — покрытия и восстановитель, например гипофосфит натрия ЫаНаРОг, гидразин фор- [c.189]

    Таким образом, вопреки довольно распространенному мнению чисто ионных соединений с идеальной ионной связью на самом деле не существует . Между тем принято считать, что химическая связь у подавляющего большинства неорганических соединений имеет ионный характер. Объясняется это двумя исторически сложившимися причинами. Во-первых, почти все химические реакции исследовались в водной среде и представляли, по существу, ионные реакции. В то же время поведение вещества в водных растворах коренным образом отличает ся от его свойств в отсутствие воды. Так, соляная кислота относится к числу сильнейших электролитов растворенный в воде хлорид водорода полностью диссоциирует на ионы водорода и хлора. Основываясь на этом факте, можно было бы допустить ионную связь в молекуле НС1. Однако безводный хлорид водорода представляет собой почти неионное соединение, в котором эффективные заряды водорода и хлора соответственно равны +0,17 и -0,17. Во-вторых, в свете учения об ионной связи в неорганической химии укоренились представления о положительной и отрицательной валентности (электровалентности). Даже если невозможны отдача и присоединение электронов, нередко подразумевали электровалентность, т.е. ионную связь. Это усугублялось еще и тем, что в неорганической химии исключительно важную роль играет электронная теория окислительно-восстановительных реакций, постулирующая переход электронов от восстановителей к окислителям. При этом степень окисления полностью отождествлялась с элект-ровалентностью и для удобства подсчета числа отдаваемых и присоединяемых электронов заведомо неионные соединения рассматривались как вещества с ионной связью. Между тем понятие степени окисления не имеет ничего общего [c.64]

    В конце 70-х годов в литературе появились сообщения, указывающие на то, что каталитической активностью в различных реакциях гидрирования и окисления обладают оксиды и соли щелочных и щелочноземельных элементов [36—38]. Отсюда следует, что реакции окислительно-восстановительного типа могут катализироваться ионами непереходных металлов, когда они находятся в составе цеолитов, оксидов или солей неорганических кислот (кстати, катионные формы цеолитов - это тоже соли алюмосиликатных кислот). Таким образом, в настоящее время можно говорить о стирании грани между кислотноюсновными и окислительно-восстановительными реакциями. [c.7]

    Механизмы реакций окисления—восстановления органических соединений. Этот тип реакхщй остается одним из наименее изз енных среди других типов реакций, в том числе и у неорганических соединений. Ситуация связана чаще всего с очень большой сложностью окислительно-восстановительных реакций. При их протекании зачастую имеет место не только внутри- и межмолекулярный перенос единичного электрона, но и перенос протона и других атомно-молекулярных частиц. Из реакции восстановления перманганат-иона в кислой среде [c.242]

    Окислительно-восстановительные реакции широко использук в анализе неорганических веществ. В качественном анализе с i помощью отделяют ионы друг от друга и обнаруживай присутствие ионов в растворе. В количественном анализе i них основаны оксидиметрические методы титриметрии. [c.148]


Смотреть страницы где упоминается термин Неорганические окислительно-восстановительные реакции: [c.5]    [c.183]    [c.137]    [c.259]    [c.10]    [c.291]    [c.29]   
Смотреть главы в:

Кинетика в аналитической химии -> Неорганические окислительно-восстановительные реакции




ПОИСК





Смотрите так же термины и статьи:

Неорганические реакции

Окислительно-восстановительные реакци

Окислительно-восстановительные реакции



© 2025 chem21.info Реклама на сайте