Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число переноса мембрана

    Для отрицательно - заряженной мембраны искомое число переноса катиона через мембрану будет, очевидно, рг.смо [c.208]

    Для положительно заряженной мембраны, увеличивающей число переноса аниона по сравнению со свободным раствором, или, что то же, уменьшающей число переноса катиона, концентрационные соотношения будут обратные и очевидно  [c.208]

    Значение числа переноса определяемого иона в свободном растворе, необходимое для расчета числа переноса в мембране по формулам (2) и (3), берут из справочных таблиц (для С1-иона в 0,01 н, растворе КС1, = 0,504). В качестве мембран удобно использовать коллодиевые, керамические, целлофан, желатину (нанесенную на бумагу или ткань и дубленую раствором формалина), а также ионообменные мембраны. [c.209]


    По влиянию на числа переноса ионов мембраны можно разделить на три группы  [c.225]

    Следовательно, числа переноса ионов N3 и ОН в порах катодной мембраны равны их значениям в растворе католита, [c.227]

    Действительно, в том случае, когда КС1 — мостик опущен в равновесный раствор, диффузионным потенциалом соединения можно пренебречь из-за незначительного различия в числах переноса ионов К и С1. Однако в том случае, когда КС1 — мостик опускается в суспензию, состоящую из значительного числа заряженных частиц, диффузия КС1 из мостика в суспензию может привести к значительной величине диффузионного потенциала, возникающего за счет изменения чисел переноса ионов К и I в суспензии. (Суспензия из некоагулирующих взвешенных частиц может быть рассмотрена как мембрана с некоторыми расстояниями между частицами, аналогичными порам жесткой мембраны ). [c.311]

    Тот факт, что многие мембраны при прохождении через них электрического тока обладают свойством изменять числа пере- носа ионов по сравнению со свободным раствором, был известен уже давно. Гитторф в своих классических работах (1902 г.) по определению числа переноса в растворах различных электролитов обнаружил, что некоторые мембраны (в особенности из животных тканей) изменяли числа переноса. В дальнейшем боль- [c.145]

    Если принять такой механизм изменения числа переноса, предложенный Михаэлисом в 1926 г. и развитый далее И. И. Жуковым и его учениками, то становится очевидным, что с изменением радиуса капилляров в сторону уменьшения мы должны наблюдать соответствующее увеличение изменений чисел переноса через мембраны. В качестве примера, иллюстрирующего экспериментальное подтверждение подобных соотношений, приводим данные, полученные нами на коллодиевых мембранах различного радиуса пор в растворе 0,01н. КС1 (рис. 91). [c.146]

    Радиус пор мембран,, ммк Числа переноса нона хлора, через мембраны в растворе K I  [c.148]

    Переходим к рассмотрению вопроса о влиянии природы жидкой фазы на электрокинетический потенциал и числа переноса ионов в капиллярных системах. Следует отметить, что имеющийся по этому вопросу материал в литературе относится преимущественно к воде и водным растворам, и очень мало исследований, посвященных исследованию неводных систем. В работах с водными растворами исследовалось влияние состава и концентрации растворов различных электролитов на величину -потенциала и числа переноса ионов через мембраны. Вопрос [c.156]


    Для катионов щелочноземельных металлов данные по числам переноса через коллодиевые мембраны различной пористости были получены Ю. С. Большаковой на кафедре коллоидной химии. Ряд цифр из ее работы приведен в табл. 24. [c.158]

    Приведенные данные существенно отличаются от результатов для одновалентных катионов. Изменение чисел переноса здесь значительно меньше, и, кроме того, это изменение становится более заметным только при малых радиусах пор мембран. Так, мембраны среднего радиуса пор более 20 ммк уже не изменяют чисел переноса двухвалентных катионов, тогда как для одновалентных катионов (КС1) изменение числа переноса при таком радиусе пор мембраны составляет около 10%. Этот результат является следствием соотношений между толщиной двойного электрического слоя и сечением пор мембраны. В случае двухвалентных катионов толщина двойного слоя будет значительно меньше, чем для одновалентных, как это следует из формулы (16), что нами рассматривалось ранее. [c.159]

    Следующий шаг вперед был сделан В. В. Стендером с сотрудниками. Они воспользовались методикой подсчета, данной Бете и Тороповым, и подробно рассмотрели процесс электродиализа для системы, реально осуществлявшейся в трехкамерном электродиализе, а именно в средней камере — раствор соли, в анодной камере — р аствор кислоты, а в катодной — раствор щелочи. В. В. Стендер подразделял мембраны на изменяющие числа переноса ионов, которые он назвал электрохимически активные , и на не изменяющие числа переноса — электрохимически неактивные . Он рассмотрел процесс электродиализа с электрохимически неактивными мембранами в системе раствор кислоты I раствор соли раствор щелочи как простой электролиз, предположив, что в процессе электродиализа поры анодной мембраны пропитаны раствором кислоты из анодной камеры, а поры катодной — раствором щелочи из катодной камеры. А. В. Маркович объединил все эти положения, дополнил их и дал общую теорию процесса электродиализа, основывающуюся на соотношениях чисел переноса. А. В. Маркович разделяет мембраны, применяющиеся в электродиализе, на три группы. [c.171]

    Мембраны электрохимически активные (изменяющие числа переноса ионов). [c.171]

    При наличии электрохимически активных мембран направление процесса, т. е. уменьшение или увеличение концентрации электролита в средней камере, зависит от соотношений чисел переноса в по>рах анодной и катодной мембран. Если катодная мембрана повышает число переноса катиона по сравнению со свободным раствором, а анодная мембрана повышает число переноса аниона, т. е. (па)1> (иа)о и (мк)п> (пк)о, и так как ( к)1+ ( 01)1= ( к) 11+ ( а) 11= 1, то [c.173]

    Использование мембраны не позволяет, однако, полностью устранить гравитационный поток. Поэтому были предложены специальные ячейки для измерения чисел переноса в индивидуальных расплавах. В одной из ячеек (рис. 28, а) электрический контакт между анодным и катодным пространствами осуществляется через пористую мембрану, но перетекание жидкости возможно через капилляр, в котором помещен воздушный пузырек. Так как перемещение пузырька происходит под действием небольшой силы, то перетекание жидкости через мембрану полностью исключается. Числа переноса рассчитываются из скорости перемещения пузырька. В конструкции ячейки (рис. 28, б) возникновение гидростатического потока предотвращено за счет горизонтального расположения системы. Числа переноса определяют по [c.91]

    Мембрана не позволяет, однако, полностью устранить гравитационный поток. Поэтому были предложены специальные ячейки для измерения чисел переноса в индивидуальных расплавах. В одной из ячеек (рис. V.2,a) электрический контакт между анодным и катодным пространствами осуществляется через пористую мембрану, но перетекание жидкости возможно через капилляр, в котором помещен воздушный пузырек. Так как перемещение пузырька происходит под действием небольшой силы, то перетекание жидкости через мембрану полностью исключается. Числа переноса рассчитываются из скорости перемещения пузырька. В другой конструкции ячейки (рис. V.2,6) возникновение гидростатического потока предотвращено за счет горизонтального расположения системы. Числа переноса определяются по перемещению жидких электродов, ограничивающих расплав с двух сторон. Предложен также метод определения чисел переноса при помощи радиоактивных индикаторов. Полного согласия результатов определения чисел переноса различными методами не получено. Числа переноса катионов в расплавах приведены ниже  [c.101]

    Мембраны, не влияющие на числа переноса ионов, называют электрохимически неактивными. В производственных условиях они имеют наиболее широкое применение. [c.423]

    Поместим плоскости, через которые будем подсчитывать потоки ионов, в тонкие мембраны солевых мостов (время / = О — начало электролиза 4 , одинаковы во всех пространствах). Напомним, что в системе отсчета Гитторфа количество растворителя справа и слева от плоскости отсчета потока остается неизменным в процессе электролиза. Так как в течение электролиза концентрации электролитов в окрестности тонких мембран остаются неизменными, то числа переноса каждого вида ионов на этих границах не есть функция времени, и [c.469]


    Способность изменять числа переноса ионов является важнейшим параметром мембран. В настоящее время для электродиализа применяют мембраны, изготовленные из катионитов (МК-40 и др.), и анионитов (МА-40 и др.), обладающие практически униполярной проводимостью, с iZi = 1 для противоиона (идеально селективные). При помощи электродиализа удается довести содержание ионов в воде (например, речной) или в коллоидном растворе до 10 — 10 н. Теоретическое и экспериментальное исследование электродиализа проведено в работах Жукова, Григорова и Марковича — авторов первой отечественной опреснительной установки [3, с. 272]. В настоящее время широко применяют многокамерные проточные промышленные установки. [c.217]

    Одна из причин задержки ионов — внутреннее электрическое поле самой мембраны, обусловленное ДЭС (в гетерогенных системах) или системой фиксирован-1 ых зарядов (в гомогенных). Это поле, уменьшая вследствие отрицательной адсорбции С- (рис. ХП.5, Ь и ХП. 23) и число переноса коионов, задерживает нх поток, а с ним и поток противоионов (согласно принципу электронейтральности). Действительно, устранение внутреннего поля в условиях ИЭТ прекращает эффект задержки, как показала работа Сидоровой и Ермаковой (ЛГУ) .  [c.219]

    Наряду с числами переноса, характеризующими электрохимическую активность мембраны в целом, полезно ввести представления о числах переноса нонов в ДЭС отдельной коллоидной частицы или капилляра. Эти числа переноса характеризуют долю участия противоионов в поверхностном токе, их относительный вклад в удельную поверхностную проводимость Ks- Связь [c.219]

    Способность изменять числа переноса характерна не только для гетерогенных капиллярных систем, но и для гомогенных мембран, изготовленных из ионообменных смол. В них электричество переносится практически целиком подвижными противоионами (rt+ i 1), тогда как фиксированные в матрице ионы (анионы— в нашем случае) не участвуют в переносе. В этих системах наблюдается также избыточная проводимость (обусловленная высокой концентрацией ионов), аналогичная Кз. Поскольку способность изменять кип приводит к следствиям, единым для обоих классов систем, мы объединим их в дальнейшем изложении общим термином мембраны . [c.237]

    Наряду с числами переноса, характеризующими электрохимическую активность мембраны в целом, полезно ввести пред- [c.241]

    Предположим, что в растворе присутствуют только два сорта ионов К+ и А , заряд каждого из которых равен единице. Пусть далее /+ — число переноса катионов через катионитовую мембрану, а / — число переноса анионов через анионитовую мембрану. Для идеальных мембран обе эти величины равны единице, т. е. катионитовая мембрана пропускает только одни катионы и полностью непроницаема для анионов и наоборот — анионитовая мембрана проницаема для одних только анионов и полностью задерживает катионы. Практически мембраны (например, катионитовая мембрана МК-40 и анионитовая мембрана МА-40) характеризуются числами переноса порядка 0,95—0,98, [c.40]

    Метод ионных подвижностей — ионофорез применяют для разделения и очистки неорганических веществ. Он основан на использовании различий в числах переноса ионов отдельных компонентов раствора в электрическом поле. При сочетании достаточно высокого градиента потенциала с противотоком растворителя замедляется движение менее подвижных ионов, в то время как более подвижные проходят навстречу растворителю. Эффективность разделения ионов возрастает с уменьшением диффузии и различных конвекционных потоков, вызываемых тепловым движением ионов и молекул. Поэтому специальные разделительные трубки заполняют мелкозернистым инертным материалом либо применяют кассеты из параллельно расположенных крупнопористых мембран, ограничивающих тепловое движение ионов и молекул вдоль потока растворителя. Применяемые в разделительных трубках крупнопористые мембраны легко проницаемы и для анионов, и для катионов. [c.106]

    Применяя мембраны, изменяющие числа переноса, т. е. электрохимически активные, можно значительно ускорить процесс электродиализа. Если поставить отрицательно заряженную мембрану на катодную сторону трехкамерного диализатора, то такая диафрагма будет увеличивать число переноса катионов, а положительно заряженная мембрана на анодной стороне будет увеличивать число переноса анионов. Таким образом можно значительно увеличить разницу чисел переноса ионов между диафрагмами. Такие диафрагмы называют идеально электрохимически активными. Разница между числами переноса в этом случае доходит до единицы, и выход по току достигает 100%. [c.258]

    Если мембрана нейтральная, то числа переноса для раствора НСЮ4 равны /р + " /б ч С10- = /б- В соответствии с этим в катодном пространстве в результате восстановления количество ионов Н+ уменьшается на I экв Н+, поступает из анодного пространства V5 экв Н+ и уходит в анодное пространство экв С10 . В итоге из катодного пространства уйдет Д экв НСЮ4. В анодном пространстве в результате окисления появится 1 экв Н+, уйдет в катодное пространство V5 экв Н+ и придет из катодного пространства /5 экв СЮ4. В итоге в анодном пространстве появится Чь экв НС1О4. Таким образом, при электродиализе с нейтральной мембраной происходит накопление хлорной кислоты в анодном пространстве. [c.242]

    Электрокинетическими свойствами капиллярных систем называются свойства, которые проявляются как следствие наличия двойного электрического слоя ионов на границе раздела твердое тело — жидкость. К таким электрокинетическим свойствам капиллярных систем относятся электроки-нетический потенциал, поверхностная проводимость и изменение числа переноса ионов в порах капиллярной системы—мембраны. [c.204]

    В центральной части капилляра, вне пределов двойного электрического слоя, числа переноса будут такие же, как и в сво-, бодном растворе без мембраны, так как подвижности и концентрации ионов раствора, наполняющего капилляр в центральной части и в свободном растворе, одинаковы. В цилиндрической оболочке, входящей в двойной слой, вследствие влияния электростатических сил поверхности, подвижности и концентрации находящихся там ионов будут отличаться от свободного раствора и поэтому числа переноса в этом слое будут иные, чем в свободном растворе. Очевидно, что при больших радиусах капилляра объем центральной его части, вне пределов двойного слоя, будет составлять подавляющую часть общего объема капилляра, и поэтому то изменение, которое вносится ионами диффузного слоя, ничтожно, и суммарное значение числа переноса по всему сечению капилляра не изменяется по сравнению со свободным раствором. [c.205]

    По окончании опыта, который проводят обычно около двух часов, выпускают раствор через краны сначала из отделений 4 и S и затем из пространств Зи6н2и9в отдельные сосуды. Растворы из отделений 4 и 8 отбрасываются, остальные подвергаются анализу. Количества раствора из пространств 2 и 9 учитываются отдельно путем взвешивания на технических весах или измеряются с помощью мерного цилиндра. В случае изменений концентрации раствора в контрольных пространствах 3 и 6 опыт бракуется. В растворах определяют концентрацию иона хлора титрованием раствором AgNOa (титрование проводят в присутствии флюоресцеина или по Фольгардту, или потенциометрическим методом [7] ряда проб определенного объема (50 см ). Разницу в концентрации исходного раствора и после опыта пересчитывают на весь объем камер 2 и 9, суммируют, и это составляет общее изменение количества эквивалентов иона хлора ао обеим сторонам мембраны )к )а Разделив на 2, получают среднее изменение в эквивалентах D, входящее в расчетную формулу (I) для вычисления величины изменения числа переноса Ап. [c.209]

    Н. С. Свердловой. Был сконструирован специальный прибор для проведения таких измерений (рис. 93) ib виде U-образной трубки с горловиной (5) для введения эмульсии. Электроды Ag Ag l (/, 2) вводились в нижние ответвления прибора (<3, 4), наполненные растворами КС1 различной концентрации. Кроме опытов с эмульсиями было проведено несколько опытов с пенами. Наличие мембраны, изменяющей числа переноса ионов, между двумя растворами электролита различной концентрации, приводит к появлению мембранного потенциала, по величине которого можно вычислить числа переноса в мембране. Число переноса иона калия в мембране рассчитывалось по известной формуле [c.150]

    В таком приборе можно было легко создать условия, соответствующие первому режиму по теории А. В. Марковича, т. е. поддерживать постоянным любой состав и концентрацию раствора в боковых камерах (4 и 5), регулируя приток раствора из запасных бутылей (1 и 2). В результате этих опытов выяснилось, что действительно, согласно предположениям при ведении электродиализа с двумя грубопористыми коллодиевыми мембранами, не изменяющими чисел переноса, концентрация электролита в средней камере оставалась постоянной при длительном пропускании электрического тока. При помещении мембраны с относительно большим числом переноса катиона на катодную. сторону и с меньшим — на анодную происходило уменьшение концентрации электролита в средней камере (рис. 106, кривая 1). При обратном расположении мембран наблюдалось не уменьшение, а увеличение концентрации раствора в средней камере (рис. 106, кривая 2). [c.173]

    Для определения чисел переноса собирают схему, изображенную на рис. Vni.9. Перед началом опыта катод медного куло-нометра электролитически покрывают медью, промывают, сушат и взвешивают. Титрованием 0,05 н. NaOH определяют концентрацию H2SO4 в исходном растворе (для титрования берут навески раствора 15—20 г). Взвешивают сосуд 1 и сухую толстую мембрану 5 (с точностью до 0,01 г) и в сосуды, /, 5, 2 наливают исходный раствор. Заполняют в перевернутом состоянии солевые мосты исходным раствором и закрывают их открытые концы съемными толстыми мембранами. Взвешенную мембрану помещают в катодный солевой мост. В сосуды 1, 5, 2 опускают солевые мосты и свинцовые электроды. Включают ток при введенном реостате (перед включением схема должна быть проверена преподавателем). Увеличивают силу тока до 40—50 мА. Через 1,5—2 ч выключают ток и сливают раствор из. солевого моста в сосуд 1 путем удаления мембраны. Взвешивают сосуд 1 вместе с мембраной (с точностью 0,01 г). Титрованием навески раствора из сосуда 1 определяют концентрацию кислоты в растворе после электролиза. Взвешивают промытый и высушенный катод кулонометра. Число переноса катиона рассчитывают, используя уравнение  [c.476]

    Число переноса ионов В+ в фазе мембраны, содержащей два сорта подвижных ионов (А+ и В+), согласно (VIII. 6) равно  [c.523]

    В качестве примера определения выхода по току рассмотрим массоперенос на обеих мембранах, положив, что 7+ — число переноса катионов в катионитовой мембране равно 0,95, а 7 — число переноса анионов аннонитовой мембраны равно 0,98. Массоперенос через катионитовую мембрану в расчете на один фарадей электричества составляется из следующего 0,95 г-эт катионов выносится из промежуточной камеры диализатора, 0,05 г-эт анионов поступает в эту камеру. Для массопере-носа через анионитовую мембрану будем иметь 0,98 г-экв анионов выносится-из промежуточной камеры, 0,02 г-эк катионов поступает в камеру. [c.41]


Смотреть страницы где упоминается термин Число переноса мембрана: [c.45]    [c.206]    [c.207]    [c.213]    [c.225]    [c.225]    [c.170]    [c.177]    [c.423]    [c.234]   
Новые проблемы современной электрохимии (1962) -- [ c.166 ]

Новые проблемы современной электрохимии (1962) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Гитторф о числах переноса в капиллярах мембран

Изменение чисел переноса ионов в мембранах

Ионообменные мембраны число переноса

Определение чисел переноса иоиов в мембране аналитическим методом

Определение чисел переноса ионов в мембране аналитическим методом

Определение чисел переноса ионов в мембране методом диффузионного потенциала

Числа переноса

Числа переноса в капиллярах. мембран

Числа переноса в капиллярах. мембран при электродиализе



© 2025 chem21.info Реклама на сайте