Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение чисел переноса ионов в мембранах

    Изменение числа переноса ионов А в мембране является мерой ее электрохимической активности. В предельном случае отрицательно заряженная мембрана проницаема только для катионов, а положительно заряженная мембрана проницаема только для анио- [c.192]

    При таком объяснении изменения чисел переноса ионов с уменьшением диаметра пор мембраны эти числа должны, очевидно, зависеть от концентрации электролитов в капиллярах. Уменьшение концентрации электролита, приводящее к увеличению толщины диффузного слоя, должно способствовать большему из- менению чисел переноса. Обратное отношение должно наблюдаться при увеличении концентрации электролитов. Опыт полностью подтвердил правильность этих выводов. [c.257]


    Очистка и разделение органических карбоновых кислот осуществлялась в двух- и трехкамерных электролизерах с катионитовыми диафрагмами амберплекс С-1 и аниопитовыми диафрагмами амбернлекс А-1. В опытах по очистке и разделению органических кислот определялись числа нереноса анионов различных кислот через анионитовые мембраны амберплекс А-1 в электрическом поле, влияние pH на изменение числа нереноса, диффузия органических кислот через ионитовые мембраны, селективность мембран в отношении отдельных иопов, относительный перенос анионов органических кислот из растворов, содержащих сульфаты. В табл. 9 приведены данные по селективности анионитовых диафрагм амберплекс А-1 в отношении различных органических кислот. Для сравнения в таблицу включены данные о селективности тех же мембран в отношении хлор-иона. Коэффициент селективности Р, характеризующий селективность мембран, вычисляли по формуле [c.302]

    Действительно, в том случае, когда КС1 — мостик опущен в равновесный раствор, диффузионным потенциалом соединения можно пренебречь из-за незначительного различия в числах переноса ионов К и С1. Однако в том случае, когда КС1 — мостик опускается в суспензию, состоящую из значительного числа заряженных частиц, диффузия КС1 из мостика в суспензию может привести к значительной величине диффузионного потенциала, возникающего за счет изменения чисел переноса ионов К и I в суспензии. (Суспензия из некоагулирующих взвешенных частиц может быть рассмотрена как мембрана с некоторыми расстояниями между частицами, аналогичными порам жесткой мембраны ). [c.311]

    Степень селективной проницаемости мембраны может быть выражена посредством изменения числа переноса подвижного иона в растворе, при внесении мембраны в раствор, с которым она образует последовательную электрическую цепь. Следовательно, степень селективной проницаемости [c.152]

    Мембраны могут принадлежать к четырем классам. Некоторые из них сравнительно инертны в электрическом отношении, как, например, мембраны из ацетата целлюлозы, используемые для опреснения воды за счет обратного осмоса. К этому же классу можно отнести пористый стеклянный диск. Ионообменные мембраны имеют заряженные группы, связанные с матрицей мембраны [13]. Следовательно, они стремятся вытеснить ионы того же заряда, что и связанный. Так, в катионообменных смолах числа переноса анионов малы. Такие мембраны используются для опреснения воды путем электродиализа. Третий класс содержит стекла, керамику и твердые электролиты [14, 15]. Стеклянная мембрана, в которой число переноса ионов водорода в области изменения химических потенциалов равно единице, применяется для создания электрода, который по существу обратим по ионам водорода, подобно водородному электроду. Такие электроды используются при измерении pH, поскольку они удобнее водородных электродов. Интересный класс составляют биологические мембраны [16, 17], которые стали предметом обстоятельных исследований того, как живые клетки транспортируют вещества и как они генерируют нервные импульсы. [c.163]


    Основным ограничением производительности электродиализ-ных аппаратов является концентрационная поляризация на мембранах. Возникает она вследствие того, что числа переноса ионов через мембрану гораздо выше, чем в растворе. Иначе говоря, ионы проходят через мембрану быстрее, чем через раствор. Поэтому концентрация ионов у поверхности мембраны со стороны камеры обессоливания резко обеднена. С другой стороны мембраны ионы недостаточно быстро отводятся в глубь раствора, и у поверхности создается повышенная концентрация ионов. Поэтому в итоге устанавливается определенный поток ионов через мембрану, который регулируется диффузионными процессами доставки и отвода ионов. Концентрационная поляризация является причиной явления, при котором повышение плотности тока уже не приводит к интенсификации перехода ионов через мембрану. При предельной плотности тока концентрация ионов со стороны входа ионов в мембрану стремится к нулю и начинается перенос Н и ОН ионов, образующихся при диссоциации и электролизе воды, что нежелательно, так как это вызывает излишний расход энергии, изменяет pH воды и не приводит к изменению ее солесодержания. [c.137]

    Прохождение постоянного тока через электрохимически активную (изменяющую числа переноса ионов п) диафрагму или мембрану, разделяющую два одинаковых раствора электролита, должно приводить к изменению его концентрации как внутри мембраны (в порах диафрагмы), так и в прилежащих слоях раствора. Исследование возникающих концентрационных профилей представляет несомненный интерес в связи с многочисленными приложениями электродиализ, электроосмотическое обезвоживание, электрохимическое закрепление грунтов, ионофорез лекарственных веществ, вызванная поляризация, аналитический метод определения чисел переноса ионов [1, 2]. [c.70]

    Идеальной селективно проницаемой мембраной можно назвать мембрану, которая при приложении к ней градиента электрического потенциала пропускает сквозь себя катионы и препятствует проникновению анионов или наоборот. Таким образом, в фазе мембраны число переноса проникающего иона равно единице, тогда как для иона противоположного заряда оно обязательно равно нулю. Так обстоит дело с идеальными мембранами вне зависимости от концентрации во внешнем растворе. Чтобы эту мембрану можно было использовать в электрохимических цепях, она должна также иметь электропроводность, сравнимую с электропроводностью растворов обычных электролитов в диапазоне концентраций от 0,1 и. до 1,0 н. Кроме того, мембрана должна быть механически прочной, гибкой и способной подвергаться высушиванию и колебаниям температуры без изменения ее физических или электрохимических свойств. Гидравлическая прочность мембраны должна быть достаточно высокой, чтобы при условии соответствующего ее крепления можно было работать под давлением. [c.147]

    В центральной части капилляра, вне пределов двойного электрического слоя, числа переноса будут такие же, как и в свободном растворе без мембраны, так как подвижности и концентрации ионов раствора, наполняющего капилляр в центральной части и в свободном растворе, одинаковы. В цилиндрической оболочке, входящей в двойной слой, вследствие влияния электростатических сил поверхности, подвижности и концентрации находящихся там ионов будут отличаться от свободного раствора и поэтому числа переноса в этом слое будут иные, чем в свободном растворе. Очевидно, что при больших радиусах капилляра объем центральной его части, вне пределов двойного слоя, будет составлять подавляющую часть общего объема капилляра, и поэтому то изменение, которое вносится ионами диффузного слоя, ничтожно, и суммарное значение числа переноса по всему сечению капилляра не изменяется по сравнению со свободным раствором. [c.205]

    Электрокинетическими свойствами капиллярных систем называются свойства, которые проявляются как следствие наличия двойного электрического слоя ионов на границе раздела твердое тело — жидкость. К таким электрокинетическим свойствам капиллярных систем относятся электроки-нетический потенциал, поверхностная проводимость и изменение числа переноса ионов в порах капиллярной системы—мембраны. [c.204]

    По окончании опыта, который проводят обычно около двух часов, выпускают раствор через краны сначала из отделений 4 и S и затем из пространств Зи6н2и9в отдельные сосуды. Растворы из отделений 4 и 8 отбрасываются, остальные подвергаются анализу. Количества раствора из пространств 2 и 9 учитываются отдельно путем взвешивания на технических весах или измеряются с помощью мерного цилиндра. В случае изменений концентрации раствора в контрольных пространствах 3 и 6 опыт бракуется. В растворах определяют концентрацию иона хлора титрованием раствором AgNOa (титрование проводят в присутствии флюоресцеина или по Фольгардту, или потенциометрическим методом [7] ряда проб определенного объема (50 см ). Разницу в концентрации исходного раствора и после опыта пересчитывают на весь объем камер 2 и 9, суммируют, и это составляет общее изменение количества эквивалентов иона хлора ао обеим сторонам мембраны )к )а Разделив на 2, получают среднее изменение в эквивалентах D, входящее в расчетную формулу (I) для вычисления величины изменения числа переноса Ап. [c.209]


    Это концентрационная ячейка с переносом ионов [К28, стр. 269 G10, стр. 928], в которой мембрана заменяет жидкостное соединение. Ее э. д. с. может быть подсчитана вместе с квазитермодинами-ческими явлениями, возникающими при прохождении одного фара-дея электричества под действием собственного потенциала мембраны. Это приводит к переносу эквивалентов Na l из раствора 1 в раствор 2 и к движению электронов от электрода слева к электроду справа — среднее число переноса иона Na в мембране. На электродах происходят реакции Ag + СГ = Ag l -f е — слева и обратная реакция — справа. Если процесс проводят обратимо, рассмотрение изменений свободной энергии приводит к следующему выражению для э.д. с. ячейки  [c.74]

    Таким образом, с ростом Сд увеличивается и ко.дичество образующихся ОН-, а следовательно, доля их участия в переносе к нулю свестись не может. Наличием гидролиза объясняется и малое влияние мембраны в Na+-фopмe на количество введенного вещества по сравнению с ионофорезом без мембраны (см. таблицу). Естественно, что мембрана не может служить преградой для паразитарных ионов, если они пространственно неотделимы от лекарственных ионов того же знака. Поэтому мембрана, расположенная меяаду лекарственным веществом и катодом, пе задерживает ионы 0Н , находящиеся между мембраной и кожей. Почему же мембрана в Н+-форме оказывает столь сильное влияние на Р Для ответа на этот вопрос необходимо рассмотреть изменения электрического заряда кожи, происходящие в процессе ионофореза и характеризующиеся числами переноса ионов в коже п. [c.85]

    Селективная проницаемость ионообменных мембран по сравнению с удельной электропроводностью гораздо больше зависит от пористости полимерной матрицы и Меньше — от содержания функциональных групп. Поэтому в процессах уменьшения обменной емкости ионообменных мембран типа МКРП и Анкалит К-2 при нагревании в воде (при минимальных изменениях в полимерной матрице) числа переноса ионов через мембраны практически не изменялись [244]. В то же время разбухание полимерной матрицы мембраны (МПФС-26) или [c.211]

    В сушествующих мемфанах с избирательной селективностью специфическая селективность по отношению к ионам магния по сравнению с ионами натрия составляет 0,2 - 0,3, Р -0,3. 0.4,. 0,02 - 0,08. Числа переноса двухвалентных катионов через катионообменные мембраны с избирательной проницаемостью для одновалентных ионов повышаются (фиг. 4) при увеличении плотности тока /18/. Изменения чисел переноса влияют на специфическую селективность мембран Р в соответствии с определением этой величины. Найдено также, что на величину Рд слабо влияют концентрация ионов в разбавленном растворе и линейное перемещение разбавленного раствора. Поэтому плотность тока, концентрация ионов и скорость разбавленного раствора необходимо учитывать при выборе условий электродиализного концентрирования с применением одновалентно-селективных мембран. [c.97]

    Осмотическая проницаемость мембраны зависит от степени ее набухания в растворе электролита и меняется с изменением кон центрации и природы электролита, в который мембрана погружается, Метод приготовления мембраны также влияет на ее осмотическую проницаемость. Однако в общем, если мембрана обладает хорошей ионной селективностью в широком интервале концентраций, она будет проявлять низкую осмотическую проницаемость и осмос не будет оказывать серьезного влияния на ее эксплуатацию при концентрации рассола ниже 2N. Было найдено, что если мембраны обладают достаточно низкой проницаемостью для электролита, числа переноса воды, или w моль/фарадей), для различных типов катионитовых и анионитовых мембран соответственно очень близки к первичному числу гидратации, например для Na" vif =8, для С1 ш =4. Так, для пары мембран, работающих в растворе Na l, общее число переноса w—w +w 12. С изменением концентрации были найдены небольшие отклонения от этой величины [М51]. [c.22]

    Глазки морского желудя (из усоногих ракообразных) обладают большей частью тех достоинств, которые нейробиологи ищут в простых системах беспозвоночных малым количеством клеток (3—5), большими размерами клеточных тел (диаметр 30—100 мкм) и простотой доступа к ним. Их единственной известной функцией является восприятие тени движущегося поблизости объекта и обеспечение защитного теневого рефлекса . Стимуляция одного из этих фоторецепторов включением света вызывает рецепторный потенциал, величина которого градуально нарастает с ростом интенсивности света, как показано на рис. 17.5. Эта реакция деполяризационная входящий ток, вызывающий изменение мембранного потенциала, переносится ионами Na+ и Са +. Как можно видеть из рис. 17.5, реакция имеет сложное развитие во времени за начальным фазическим всплеском следует адаптация и переход к медленному снижению в статической фазе. Адаптация обусловлена несколькими факторами, в том числе уменьшением входящего Ыа+-тока из-за возрастания внутриклеточной концентрации Са + и изменением свойств мембраны из-за потенциалзависимой К+-проводимости. Таким образом, хотя эта реакция и безымпульсная, она тем не менее определяется несколькими механизмами, которые включают потенциалзависимые процессы. Изучение- этого простого [c.426]

    Крессман и Тай [27] изучали влияние концентрации электролитов на перенос ионов через катионитовые мембраны пермаплекс. Экспериментально определены числа переноса для Ы+ в растворах ЫОН и Ь12304 разной концентрации. При изменении концентрации Ь10Н от 0,5 до 4,0 н. число переноса Ы + изменялось от 0,7 до 0,4. [c.64]

    До сих пор при обсуждении имеющегося экспериментального материала основное внимание было уделено проявлению в мембранном потенциале сопряженности потоков ионов и комплексона. Однако результаты, которые получены для фоновых мембран, не содержащих валиномицина, указывают на то, что изменения потенциала во времени связаны не только с перераспределением комплексона. Естественно предположить, что для фоновых мембран в области концентрированных растворов динамику потенциала определяют два ввда ионов, существенно преобладающих в мембране и С1 . Вопрос о причинах высокой катионной селективности мембран, не содержащих значительных количеств ионообменных центров, до настоящего времени остается дискуссионным. Низкая подвижность ионов С1 в мембране [б] может быть обусловлена как специфическим взаимодействием их с полимерной основой мембраны, так и образованием в мембране водных мицелл, поглощающих избыточное количество анионов. Мицеллы могут возникать при участии любых поверхностно-активных агентов, в том числе содержащихся в мембране комплексона и пластификатора, если молекулы последних именгг соответствующее строение. Если образование водных глицелл в мембране и проникновение в них ионных компонентов происходит с меньшей скоростью, чем поступление в мембрану электролита в первые моменты контакта ее с концентрированным раствором, то во времени потенциал электрода должен изменяться, поскольку по мере формирования мицелл должно уменьшаться относительное участие ионов, преимущественно поглощаемых мицеллами, в переносе электричества. Если таковыми являются анионы, то потенциал должен изменяться в направлении, соответствущем полной катионной функции. Шенно такое направление изменения потенциала наблюдалось в наших опытах для фоновых мембран при резком увеличении концентрации электролита в рас- [c.118]


Смотреть страницы где упоминается термин Изменение чисел переноса ионов в мембранах: [c.216]    [c.216]    [c.225]    [c.151]    [c.170]    [c.440]    [c.280]    [c.225]    [c.207]    [c.259]    [c.207]    [c.303]   
Смотреть главы в:

Руководство к практическим работам по коллоидной химии -> Изменение чисел переноса ионов в мембранах

Руководство к практическим работам по коллоидной химии Издание 2 -> Изменение чисел переноса ионов в мембранах




ПОИСК





Смотрите так же термины и статьи:

Иониты мембраны

Ионное без переноса

Числа переноса

Числа переноса ионов

Число ионов

Число переноса иона

Число переноса мембрана



© 2024 chem21.info Реклама на сайте