Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы капиллярно-дисперсные

    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда — основную роль не только в процессах адсорбции ионов и ионного обмена, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы электрокапиллярные и электрокинетические явления процессы массо- и энергообмена в капиллярно-пористых телах поляризационные явления, происходящие при этом, и, наконец, явления, связанные с электростатическим взаимодействием коллоидных частиц, определяющим в значительной степени устойчивость дисперсной системы. Все эти феномены взаимосвязанные посредством ДЭС, на- [c.178]


    Общую систему параметров, от которых зависит сила сопротивления, действующая на частицу, движущуюся в потоке сплошной фазы, в случае капель и пузырей необходимо дополнить введением вязкости дисперсной фазы Дд, от которой зависит подвижность их поверхности. Кроме того, форма капель и пузырьков не является заданной, а формируется в процессе движения. Известно, что она определяется мгновенным балансом силы давления, действующей на поверхность деформируемой частицы со стороны окружающей жидкости и стремящейся сжать ее в направлении движения и силы поверхностного натяжения, препятствующей такому сжатию. Сила давления пропорциональна скоростному напору Рс /2, а сила поверхностного натяжения — капиллярному давлению 2о/с э, где а - поверхностное натяжение. Поэтому система определяющих параметров для силы сопротивления, действующей на капли и пузыри, должна иметь вид (1 ,, р , А<с, А<д, о. [c.39]

    Синтез пористых тел требует знания их текстуры и во многом определяется морфологией. В корпускулярных телах большая уд. пов-еть обеспечивается получением возможно меньших первичных частиц, что достигается оптимальным соотношением скоростей зародышеобразования и роста частиц (см. Зарождение новой фазы, Кристаллизация). Объем пор определяется плотностью упаковки частиц. Напр., в гелях плотность упаковки зависит от соотношения прочности скелета гидрогеля и разрушающих его поверхностных сил при образовании в процессе сушки менисков межмицеллярной жидкости. Сушка прочных состарившихся гелей сохраняет их рыхлую структуру и дает системы с большим объемом пор при сушке свежеобразованных гелей рыхлая структура разрушается и происходит переупаковка частиц под влиянием мощных капиллярных сил, в результате образуются тела с малым объемом пор. Размер пор регулируется размером частиц и плотностью их упаковки. В губчатых и кек-рых корпускулярных структурах образование пор достигается удалением одного или нескольких компонентов твердого тела при растворении (пористые стекла, скелетные катализаторы), дегидратацией гидроксидов или терморазложением солей (пористые оксиды разл. природы), частичным окислением (активные угли) и др. процессами. Текстура продукта определяется концентрацией и дисперсностью компонентов в исходном материа- [c.70]

    Сплошную массу вещества могут пронизывать поры и капилляры, образующие капиллярно дисперсные системы (рис. 90, г, 5). К ним относятся, например, древесина, разнообразные мембраны и диафрагмы, кожа, бумага, картон, ткани. [c.307]


    Во всех рассмотренных случаях концентрационной зависимости свойств речь шла о двухфазных дисперсных системах типа дисперсная фаза —жидкая дисперсионная среда (Т—Ж). Последую-ш,ее увеличение концентрации дисперсной фазы сопровождается утоньшением прослоек жидкой среды, далее образованием капиллярных менисков и появлением наряду с жидкой газовой (воздушной) среды и затем исчезновением менисков [5]. [c.20]

    Реальные капиллярно-пористые тела представляют собой дисперсные системы, пронизанные многочисленными капиллярами [c.237]

    Для контроля за состоянием асфальтенов в различных системах, в том числе и в нефтях, часто пользуются так называемым "капиллярным" методом [17, 30]. Метод заключается в нанесении капли раствора через узкий капилляр или пипеткой на фильтровальную бумагу, которая способна задерживать крупные дисперсные частицы в центре расплывающейся капли. По виду пятна на бумаге после впитывания капли нефти судят о наличии в ней агрегатов асфальтеновых частиц. Равномерная окраска пятна свидетельствует об отсутствии таких агрегатов, а гетерогенная - об их наличии. По изменению вида пятна при добавлении к нефти различных веществ можно оценивать их действие на асфальтены. [c.20]

    Для подсчета запасов нефти, проектирования, разработки месторождений н проведения мероприятий по повышению нефтеотдачи большое значение имеет изучение свойств и закономерностей распределения остаточной воды в пористой среде. Остаточная вода, содержащаяся в порах коллекторов нефти и газа, включает различные ее категории и виды, начиная от адсорбированной воды, удерживаемой молекулярными силами поверхности твердого тела, до воды, капиллярно удержанной отдельными элементами сложной полидисперсной структуры. Свойства жидкостей в слоях сильно отличаются от свойств свободной воды в порах дисперсного вещества. Это вызывает существенное отклонение от классических уравнений Дарси и Пуазейля свойств жидкости в пористых системах с размерами пор, соизмеримыми с толщиной аномальных слоев. К аномальным относятся слои жидкости, примыкающие к поверхности пор и отличающиеся по своим физико-механическим и термодинамическим свойствам от жидкости в объемной фазе. Толщина этих слоев может быть соизмерима с размерами пор. [c.101]

    Гидродинамический фактор, который в разбавленных дисперсных системах проявляется в процессах седиментации и диффузии, здесь сводится к процессу вытекания жидкости из жидких слоев под действием капиллярных сил и под влиянием гидростатического и расклинивающего давления. Таким образом, проблема устойчивости концентрированных пен и эмульсий сводится к решению вопроса о том, почему и как жидкостные перегородки в этих клеточных структурах утончаются и при какой толщине, почему и как они внезапно разрушаются. К сожалению, эти системы подробно не рассмотрены. Вместо этого предлагались различные теории, призванные объяснить устойчивость пен и эмульсий влиянием од-ного-единственного фактора на основе одного-единственного механизма. В результате большой и многообразный экспериментальный материал, касающийся центральной проблемы науки о пенах и эмульсиях — их устойчивости, до сих пор не обобщен в рамках единой теории. Отдельные попытки теоретического объяснения экспериментально установленных фактов носят отрывочный и крайне противоречивый характер. Обстоятельные книги Клейтона [1 1 и Бикермана [2] дадут читателю представление о состоянии этой проблемы. [c.222]

    Движение под действием внешнего электрического поля а) свободных частиц дисперсной фазы (суспензии, эмульсии, золи) в дисперсионной среде называется электрофорезом (катафорезом), б) жидкости относительно неподвижной твердой фазы (капиллярные системы, гели) называется электроосмосом. [c.175]

    Разрабатываются способы интенсификации добычи нефти путем использования электроосмоса в процессе вытеснения нефти водой из коллекторов. Перспективность этого направления, как и использования электроосмоса при фильтрации, связана с тем, что с увеличением дисперсности системы увеличивается ее гидравлическое сопротивление и фильтрация становится все менее эффективной. Эффективность же электроосмоса возрастает по мере развития диффузных слоев с увеличением Sq. Эти исследования, сопряженные с разработкой теории совместного электроосмоса двух жидкостей (нефти и воды), развиваются в работах Тихомоловой (ЛГУ) . Успешными оказываются и попытки использовать электроосмос для осушки стен сырых зданий. Путем закладки гальванических элементов в стену здания создается постоянный электро-осмотический поток, направленный навстречу восходящему потоку влаги, обусловленному капиллярным поднятием. [c.212]

    Таким образом, не изменяясь со степенью дисперсности капиллярной системы и с концентрацией ионов в растворе, удельная поверхностная проводимость Кз характеризует ионную природу поверхности раздела. [c.214]


    Следует указать также на то, что обнаруженные в приведенных исследованиях значительные изменения величины -потенциала и чисел переноса ионов в капиллярных системах с добавками малых количеств ПАВ заставляют поставить вопрос о том, что при проведении опытов по определению электроповерхностных свойств различных дисперсных систем наличие ничтожных загрязнений ПАВ может оказать весьма сильное влияние на результаты исследований. Это следует учитывать при постановке опытов в области электрокинетических явлений. [c.165]

    В области низких температур, как показали многочисленные исследования смазочные масла обладают рядом особенностей, в частности пределом текучести, или пластичностью, тиксотроп-ностью , или аномалией вязкости, свойственным дисперсным системам. Вязкость таких систем (фиг. 28) изменяется при различных скоростях протекания дисперсных тел через капиллярные трубки. При увеличении скорости течения, точнее градиента скорости (участок 2), структура дисперсной системы разрушается, в связи с чем вязкость вещества снижается и доходит до определенного [c.77]

    По кинетическим свойствам дисперсной фазы все дисперсные системы можно подразделить на два класса свободно-дисперсные, в которых частицы дисперсной фазы не связаны между собой и могут свободно перемещаться (лиозоли, аэрозоли, суспензии, эмульсии), и связно-дисперсные, в которых одна из фаз структурно закреплена и не может перемещаться свободно. К этому классу относят гели и студни, пены, капиллярно-пористые тела (диафрагмы), твердые растворы и др. [c.369]

    Приступая к выводу основных уравнений электрофореза и электроосмоса, рассмотрим две модели. Одна из них — пористая мембрана, насквозь пронизанная цилиндрическими капиллярными порами, другая — дисперсная система, содержащая длинные цилиндрические частицы, оси которых совпадают с направлением силовых линий электрического поля (рис. 37). Двойной электрический слой будем рассматривать как плоский конденсатор. [c.94]

    Все рассмотренные нами капиллярные явления выражены тем сильнее, чем выше дисперсность системы. Изменение р с У заметно усложняет поведение системы. Так, для системы вода — водяной пар правило фаз дает одну степень свободы  [c.73]

    Уравнение (XIV. 3) описывает вязкое течение как жидких, так и твердых систем, а также пластическое течение при замене на (Ф — 9 к)- Между жидкими и твердыми структурированными системами не существует (как мы увидим далее) принципиальных различий. Тем не менее, многие структурированные системы с низким содержанием дисперсной фазы, характеризующиеся малой прочностью (малым числом контактов), обладают текучестью, близкой к текучести чистых жидкостей. Для изучения особенностей течения таких систем, также как и неструктурированных суспензий и золей, применяют обычный для жидкостей метод капиллярной вискозиметрии, основанный на измерении объемной скорости течения через капилляр. [c.272]

    Все дисперсные системы можно разделить на 2 класса — свободнодисперсные, в которых частицы дисперсной фазы не связаны между собой и могут перемещаться свободно (суспензии, эмульсии, золи, в том числе аэрозоли) и связнодисперсные, в которых одна из фаз не перемещается свободно, поскольку структурно закреплена. К ним относятся капиллярно-пористые тела, называемые часто диафрагмами или капиллярными системами, мембраны — тонкие пленки, обычно полимерные, проницаемые для жидкостей и газов, гели и студни, пены — жидкие сетки с воздушными ячейками, твердые растворы. [c.14]

    К дисперсным системам с твердой дисперсионной средой можно отнести капиллярно-пористые тела, в которых газовая фаза сосредоточена в узких капиллярах. Типичное капиллярно-лористое тело представляет собой обычная древесина. Шерстяные, хлопчатобумажные и другие ткани, фетр, войлок, бумага, картон —г все это дисперсные системы с твердой дисперсионной средой и газовой дисперсной фазой. Для них характерна гетерогенность и большая поверхность раздела между фазами. [c.238]

    Возможно разделение концентрированных дисперсных систем фильтрующими центрифугами, в которых за короткий отрезок времени производится загрузка разделяемого продукта в ротор до приведения его во вращение, либо при малой скорости вращения, либо при нарастающей. В данном случае процесс разделения гетерогенной системы не идентичен процессу фильтрования с образованием осадка, движущей силой процесса центрифугирования являются как давление, развивающееся в жидкости в результате действия на нее поля центробежных сил, так и давление уплотняющегося осадка. При центрифугировании имеет место лишь освобождение полностью заполняющей поры дисперсной системы от жидкой фазы. Может, однако, требоваться и дальнейшее отделение уже от дисперсной трехфазной системы капиллярной и пленочной жидкости (центробежный отжим). Тогда процесс разделения окажется неоднозначным, т.е. подчиняющимся различным закономерностям. Продолжительность отжима обычно устанавливают экспериментально. После построения графика Ж=Дт) находят время отжима в зависимости от требуемой влажности осадка. По той же методике определяют и продолжительность промывки осадка [1]. [c.360]

    Формирование структур дисперсных материалов с контактами спекания, в том числе и структур абразивных материалов,, осуществляется в несколько последовательных этапов [166]. На первом этапе при получении многокомпонентного керамического связующего образуется двухфазная дисперсная система Т—Г с непосредственными точечными контактами между частицами твердой фазы. Затем на стадии смешения абразивных зерен, жидкой среды и связующего формируется двухфазная Т—Ж и трехфазная Т—Ж—Г дисперсные системы с коагуляционными контактами между частицами твердой фазы при наличии капиллярных менисков между агрегатами. В результате обжига системы образуется дисперсный материал с нрочныма контактами спекания. [c.208]

    Отражено современное состояние исследований свойств воды в дисперсных материалах и пористых телах (природные дисперсные системы, продукты химической технологии, биологические объекты). Изучение структуры и свойств воды в тонких слоях, пленках и порах имеет важное прикладное значение (при получении адсорбентов, катализаторов, наполнителей для композиционных материалов, создании стабилизаторов буровых растворов для управления флотацией и капиллярной пропиткой, а также прочностью горных пород и процессами структурообра-зования в пористых телах). [c.2]

    Из природных дисперсных материалов торф относится к наиболее гидрофильным, что, в общем, закономерно, поскольку его образование происходит вследствие биохимического и химического превращений отмирающей растительности в условиях избыточного увлажнения и ограниченного доступа воздуха. Гидрогеологические, климатические и геоморфологические условия формирования торфяных месторождений, многообразие расте-ний-торфообразователей предопределяют сложность химического состава и структуры надмолекулярных образований торфа. Торфяные системы в общем случае представляют собой дисперсный капиллярно-пористый материал, в котором на долю твердой фазы приходится примерно 15—40% объема, занимаемого материалом. Твердая фаза торфа, в свою очередь, является полидисперсной системой с развитой поверхностью раздела фаз (50—400 м2/г) и по своей природе относится к многокомпонентным полуколлоидно-высокомолекулярным соединениям с признаками полиэлектролитов и микромозаичной гетерогенности. [c.63]

    В природных дисперсных материалах, в том числе и торфе, перенос влаги, как правило, происходит в неизотермических условиях. При этом процессы термовлагообмена в капиллярно-по-ристых системах протекают наиболее интенсивно, когда они находятся в трехфазном состоянии [218], отвечающем наибольшей подвижности влаги под действием градиентов температуры. При низком влагосодержании материала (11- 0) термическая подвижность влаги мала вследствие высокой энергии ее связи с твердой фазой. При двухфазном состоянии торфа в нем возможна лишь термическая циркуляция массы без ее перераспределения Б объеме йи 1йТ = 0). Кроме того, с увеличением и уменьшается поверхность раздела жидкость — газ, определяющая тер-мовлагоперенос под действием градиента поверхностного натяжения. Следовательно, наибольшая термическая подвижность дисперсионной среды соответствует такому остоянию материала, когда его поры не полностью заполнены влагой и в достаточной мере развита поверхность-раздела жидкость — газ [231]. Влага порового пространства в данном случае разделена короткими пленочными участками, от термической подвижности которых и зависят значения термоградиентного коэффициента б. [c.76]

    Огромную роль играет коллоидная химия в химической технологии. Практически нет такой отрасли химической технологии, где бы не имели решающего значения поверхностные явления и дисперсные системы. Измельчение сырья и промежуточных продуктов, обогащение, в том числе флотация, сгущение, отстаивание и фильтрация, процессы кондеисации, кристаллизации и вообще образование новых фаз, брикетирование, сиекание, гранулирование—все эти процессы протекают в дисперсных системах, и в них большую роль играют такие явления, как смачивание, капиллярность, адсорбция, седиментация, коагуляция, которые рассматриваются в курсе коллоидной химии. [c.15]

    К дисперсным системам относят также капиллярно-пористые материалы (почвы, горные породы, спрессованные порошки, поглотители, катализаторы и т, п,). Понятие дисперсный происходит от лат. с115рег5из — раздробленный, рассеянный. [c.365]

    Агломерацией называется самопроизвольное или направленное сближение частиц тонкодисперсных материалов под действием ван-дер-ваальсовых сил, сил аутогезии (при сближении частиц одного и того же вещества), адгезии (при сближении частиц различных веществ), а также капиллярных сил и сил поверхностного. натяжения (при наличии в дисперсной системе жидкости) вплоть до образования контактов между ними. Возникшее в результате сближения частиц физическое тело, независимо от его формы, прочности, [c.297]

    Высокая дисперсность и огромная поверхность характерны не только для множеств малых частиц, диспергированных в жидкой, твердой или газообразной средах (свободнодисперсные системы), но и для тел, пронизанных тончайшими порами. К этому, не менее значительному классу дисперсных систем (называемых связнодис-персньши) относятся все капиллярно-пористые тела, а именно почвы, грунты, многие горные породы, поглотители (адсорбенты), катализаторы, спрессованные порошки и т. д. у активных углей, широко применяемых в качестве поглотителей, удельная поверхность достигает многих сотен и даже тысяч м /г. Предельное состояние этого класса дисперсных систем — мембраны , гели [c.7]

    При смачивании гептаном стеклянные частицы сохраняют еще значительную энергию парного взаимодействия (F/2 л 20 эрг/см ) и коагулируют наоборот, при смачивании гидрофобных частиц метилированного стекла гептаном энергия смачивания, составляющая 20 эрг/см (ажг 20 эрг/см os6 I), полностью компенсирует энергию взаимодействия частиц в воздухе так, что в гептане частицы не сближаются (Fa/2 20 — 20 0), расклинивающее давление П между частицами положительно, и дисперсная система такого типа устойчива. Водой эти частицы не смачиваются ( os 0 < 0), она оттекает от зоны контакта, возникает капиллярная стягивающая сила (П С 0), Fa/2 увеличивается до 40 эрг/см , и система оказывается неустойчивой. [c.287]

    Среди xapajKTepHbix явлений в дисперсных системах, связанных с избирательным смачиванием, можно назвать просачивание эмульсий через пористые фильтры, Если грубодиоперсный фильтр избирательно смачивается каплями дисперсной фазы эмульсии, то эти капли могуг прилипать к поверхности материала фильтра и задерживаться. Высокодисперсный фильтр, избирательно смачиваемый дисперсионной средой, также способен задерживать капли эмульсии, размер -которых много больше диаметра пор капли не могут пройти через такой фильтр, так как для этого требуется их сильная деформация, приводящая к возникновению высокого капиллярного давления. Первый вариант иногда используется для освобождения нефти от эмульгированной в ней воды (см. также 3 гл. X) нефть фильтруют через грубодисперсный гидрофильный фильтр фильтрация через тонкопористы гидрофобный фильтр позволяет очистить от воды бензин. [c.98]

    Возникновение электрических полей в нефтегазоводяной смеси изменяет дисперсность частиц в флюиде, что проявляется в изменении проницаемости за счет кольматации-декольматации поровых каналов твердыми частицами или газовыми микропузырьками и компенсирования капиллярного гистерезиса. Высокая чувствительность процессов коагуляции и пептизации к электрическим полям, возможно, является более важным фактором для фильтрации нефтегазоводяной смеси. Образование объемных зарядов порождает электрические поля, которые распространяются со скоростью света и изменяют условия движения флюида на далеких расстояниях от места первичного формирования, что может вызывать диспергирование нефти вдали от контакта нефть—закачиваемая вода ввиду сильной чувствительности коллоидных растворов к внешним воздействиям, а также возможной необратимости изменений, происходящих в таких системах под действием внешних факторов. [c.27]

    В агрегативно устойчивых системах дисперсный состав может изменяться вследствие изотермич. перегонки - мол. переноса в-ва дисперсной фазы от мелких частиц к более крупным. Этот процесс обусловлен зависимостью давления насыщенного пара (или концентрации насьцценного р-ра) от кривизны пов-сти раздела фаз (см. Капиллярные явления). [c.82]


Смотреть страницы где упоминается термин Системы капиллярно-дисперсные: [c.309]    [c.5]    [c.164]    [c.6]    [c.8]    [c.32]    [c.192]    [c.261]    [c.263]    [c.239]    [c.82]   
Общая химия 1982 (1982) -- [ c.310 ]

Общая химия 1986 (1986) -- [ c.300 ]

Общая химия Издание 18 (1976) -- [ c.306 , c.307 ]

Общая химия Издание 22 (1982) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Капиллярная

Капиллярность

Система капиллярные



© 2025 chem21.info Реклама на сайте