Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Числа переноса по изменению концентрации раствора

    Уравнение (IV.39) лежит в основе метода Гитторфа, в котором числа переноса определяют по изменению концентрации раствора в приэлектродном отсеке. [c.62]

    Сначала вычисляют предварительное или кажущееся число переноса, пренебрегая влиянием электрической проводимости растворителя и изменениями объема у электродов. В дальнейшем, вводя поправки, учитывающие эти факторы, рассчитывают истинное число переноса. Схема определения чисел переноса представлена на рис. 77. Границу ао между двумя растворами электролитов в трубке (рис. 77) получают наслаиванием одного из растворов АР на другой Щ растворы имеют общий ион Р. При пропускании в течение т секунд постоянного тока граница поднимется в положение а . При перемещении ионов А вверх по трубке через любое сечение трубки, расположенное выше переносится Рс У Кл, где Р — число Фарадея, Сд — концентрация ионов А (в г-экв/л), V — объем, равный произведению поперечного сечения трубки на расстояние пройденное границей, I — сила [c.369]


    Уравнение (IV.38) лежит в основе метода Гитторфа, в котором числа переноса определяют по изменению концентрации раствора в приэлектродном отсеке. Это уравнение является приближенным, так как не учитывает перенос растворителя (воды) через пористую мембрану, разделяющую отсеки / и II. Более того, изменение количества растворителя в отсеке I в процессе электролиза зависит от конструкции измерительной ячейки, поскольку оио обусловлено не только переносом растворителя в сольватных оболочках ионов, но и другими причинами нарушением гидростатического равновесия из-за обогащения или обеднения отсека / продуктами электролиза, процессом электроосмоса и др. Вследствие этого уравне- [c.70]

    Число переноса того или иного иона определяется долей электрического тока, переносимой им через раствор во время электролиза. Находят числа переноса, измеряя изменения концентрации раствора вблизи электродов. Число переноса может быть определено из уравнения [c.371]

    Зная числа переноса ионов в свободном растворе и в порах мембран и суммируя изменения концентрации по отдельным зонам как разность чисел переноса в мембранах и в свободном растворе, можно найти баланс изменений концентрации раствора в средней камере после прохождения электрического тока. [c.171]

    Электрический ток способны проводить следующие группы веществ 1) газы, 2) металлы и 3) электролиты. В кулонометрическом анализе, как правило, имеют дело с металлическими проводниками, используемыми для подачи электроэнергии от источников тока к электродам, и с электролитическими проводниками, или растворами электролитов, в которых обычно осуществляется реакция, положенная в основу того или иного метода определения. Прохождение электрического тока через раствор электролита сопровождается переносом вещества, что обнаруживается либо по изменению концентрации раствора, либо по выделению веществ на электродах. Этот процесс электрохимического окисления или восстановления веществ на электродах, происходящий с потерей или присоединением электронов, называется электролизом. Для осуществления электрохимической реакции в растворе должны находиться частицы, которые, достигнув поверхности электрода, смогли бы принять или отдать какое-то число электронов. К электродам перемещаются ионы разного заряда, причем положительно заряженные ионы (катионы) направляются к катоду, а отрицательные (анионы) — к аноду. Таким образом, при прохождении тока через цепь, состоящую из металлического проводника и электролита, на поверхности электродов происходит передача электронов от частицы электроду или наоборот. [c.5]


    Приведенные уравнения показывают, что изменение концентрации раствора вблизи каждого из электродов пропорционально числу переноса иона, который на данном электроде не реагирует. [c.174]

    Особенно следует отметить изменение числа переноса ионов гидроксила под действием гликоля и глицерина. Эти неэлектролиты, особенно глицерин, сначала резко снижают число переноса ионов гидроксила (рис. 4.35 и 4.36), затем при дальнейшем повышении их концентрации быстро увеличивают его. Минимум числа переноса обнаруживается в растворах с содержанием гликоля и глицерина 40 и 15 мол. % соответственно (последнее значение близко к концентрации этанола, соответствующей максимуму числа переноса в растворах с этим неэлектролитом). [c.455]

    Наличие мембран влияет на числа переноса ионов по сравнению с их значениями в свободном объеме раствора. Зная числа переноса соответствующих ионов, можно определить изменение концентрации растворов в трех пространствах электролизера. [c.177]

    Прохождение электрического тока сквозь растворы электролитов. Скорость, подвижность и электропроводность ионов. Зависимость скорости ионов от среды, температуры, напряжения, природы самого иона. Влияние гидратации (сольватации) на скорость ионов. Подвижности ионов (необходимо знать порядок величин). Законы Гитторфа. Числа переноса. Изменение концентрации у электродов и закон Фарадея. Практическое значение знания чисел переноса. Эквивалентная электропровэдность при данном и бесконечном разведении. Закон независимого движения ионов. Вычисление электропроводностей ионов л+ и X- из подвижностей ионоз, из чисел переноса и эквивалентной электропроводности при бесконечном разбавлении. Методы определения чисел переноса. Кулонометры. Схема соединения приборов при определении чисел переноса. [c.83]

    Поскольку подвижности ионов являются функциями концентраций, температуры, природы растворителя, то числа переноса также зависят от этих факторов. Обычно изменение концентрации раствора электролита сравнительно слабо сказывается на величинах чисел переноса его ионов. Так, при изменении концентрации от О до 0,1 г-экв л для Н+ в растворе НС1 возрастает от 0,821 до 0,831 для К+ в растворе КС1 остается постоянным и равным 0,490 для Li+ в растворе ЫС1 — уменьшается от 0,337 до 0,317. По мере разведения раствора числа переноса стремятся к предельному постоянному значению. Однако в не-которых случаях число переноса сильно меняется с концентрацией. Примером может служить раствор иодистого кадмия, для которого 4=0,445 при концентрации 0,01 г-экв л и уменьшается до — 0,003 при концентрации 1,0 г-экв л. Эти данные могут быть объяснены существованием в растворе следующего вида комплексных ионов  [c.185]

    Сумма чисел переноса катиона и аниона равна единице + + + / =1. При электролизе вследствие перемещения ионов под влиянием поля и превращений на электродах происходит изменение концентрации электролита в растворе у обоих электродов. Определив это изменение, можно найти числа переноса. [c.200]

    Возвращаясь к электродиализу, нетрудно видеть, что изменение концентраций электролитов в средней камере электроДиализатора может происходить только в том случае, если по сечению электродиализатора изменяются числа переноса электролита. Такое изменение чисел переноса, как указывает И. И. Жуков, может произойти как в результате изменения чисел переноса в порах диафрагмы по сравнению со свободным раствором, так и вследствие изменения состава электролита в отдельных камерах. Последнее явление наблюдается в работающем электродиализаторе, где в анодной камере образуется кислота и в катодной — щелочь. При этом в средней камере может происходить уменьшение концентрации электролита, даже если применялись диафрагмы, не изменяющие чисел переноса (так называемые электрохимически неактивные диафрагмы с порами достаточно большого размера), так как по мере накопления кислоты и щелочи в электродных камерах взамен уходящих ионов электролита в среднюю камеру начнут поступать ионы № и ОН, образующие воду. [c.257]

    Если мы возьмем два раствора хлористого калия различной концентрации, то величина диффузионного потенциала на границе этих растворов будет ничтожной вследствие того, что подвижности К и С1 близки между собой. Однако, если мы разделим эти два раствора мембраной, изменяющей соотношение подвижностей катиона и аниона, или, что то же самое, изменяющей числа переноса по сравнению со свободным раствором, то между этими растворами возникает разность потенциалов. Величина этой разности потенциалов будет возрастать соответственно изменению чисел переноса мембраной. Эта зависимость и составляет основу для измерения чисел переноса путем диффузионного потенциала, [c.210]

    Приведенное выражение показывает, что коэффициент эффективности а увеличивается при уменьшении радиуса пор г, а также с уменьшением концентрации раствора (пропорциональной электропроводности иу). Действительно, в обоих случаях общее количество ионов в объеме капилляра уменьшается гораздо быстрее, чем число ионов двойного слоя. Поэтому относительная доля поверхностных ионов будет возрастать с уменьшением г и ху. Таким образом, коэффициент эффективности а, подобно изменению чисел переноса в диафрагме (работа 36), характеризует долю участия поверхности раздела, т. е. ионов двойного слоя, в общем переносе электричества через капиллярную систему. [c.215]


    В значительном числе случаев катионы, имеющие сравнительно небольшие размеры, отличаются большой подвижностью. В водных растворах особенно велика подвижность ионов водорода (НзО ). В расплавленных силикатах, а также фосфатах числа переноса катионов близки к единице. Экспериментальные определения чисел переноса основываются на том, что при электролизе вследствие разной подвижности катионов и анионов происходят неодинаковые изменения концентрации электролита вблизи катода и анода. Если, например, катионы двигаются быстрее, чем анионы, то в анодном пространстве (анолите) вследствие этого будет наблюдаться большая убыль концентрации, чем в катодном пространстве (католите), разумеется, при отсут- [c.149]

    Поскольку перенос электричества через раствор сопровождается изменением концентрации электролита в приэлектродных пространствах, то, измерив это изменение, можно определить числа переноса. И. Гитторфом было доказано, что при любом количестве прошедшего электричества [c.266]

    Одна теоретическая тарелка Wth. вызывает меньшее изменение концентрации, чем высота единицы переноса п , если кривая равновесия имеет больший наклон, чем рабочая линия (рис. 86, III), и наоборот (рис. 86,7). На рис. 86 вспомогательная линия при определении числа теоретических тарелок показана пунктиром, а при определении числа единиц переноса — сплошной линией. В случае идеальных и почти идеальных растворов с низкой относительной летучестью заметного расхождения между числом единиц переноса и числом теоретических тарелок th. пет. Для неидеальных растворов и растворов с высокой относительной летучестью указанная разница может иметь такую величину, что ее необходимо учитывать. Это видно из данных, приведенных в табл. 17 (1221. [c.143]

    По окончании опыта, который проводят обычно около двух часов, выпускают раствор через краны сначала из отделений 4 и S и затем из пространств Зи6н2и9в отдельные сосуды. Растворы из отделений 4 и 8 отбрасываются, остальные подвергаются анализу. Количества раствора из пространств 2 и 9 учитываются отдельно путем взвешивания на технических весах или измеряются с помощью мерного цилиндра. В случае изменений концентрации раствора в контрольных пространствах 3 и 6 опыт бракуется. В растворах определяют концентрацию иона хлора титрованием раствором AgNOa (титрование проводят в присутствии флюоресцеина или по Фольгардту, или потенциометрическим методом [7] ряда проб определенного объема (50 см ). Разницу в концентрации исходного раствора и после опыта пересчитывают на весь объем камер 2 и 9, суммируют, и это составляет общее изменение количества эквивалентов иона хлора ао обеим сторонам мембраны )к )а Разделив на 2, получают среднее изменение в эквивалентах D, входящее в расчетную формулу (I) для вычисления величины изменения числа переноса Ап. [c.209]

    Представление о том, что в растворах поверхностноактивных веществ существуют коллоидные частицы нескольких типов и различных размеров и что их количественное соотношение зависит от общей концентрации вещества, температуры и т. п., весьма логично и убедительно [56] и, вероятно, имеет больше приверженцев, чем теория образования мицелл одного типа. Ван-Риссельберге 57], развивая эту же мысль о большом интервале возможных изменений в размерах мицелл и в их суммарных зарядах, произвел математическую обработку данных по осмотическим коэффициентам, электропроводности и числам переноса в разбавленных растворах на основе представления о средней мицелле , размеры и заряд которой являются переменными. [c.312]

    Розенберг, Джордж и Поттер [12] определяли числа переноса Гитторфа в четырехкамерной ячейке, составленной попеременно из трех серебряных дисков и двух мембранных дисков., отделенных друг от друга пластмассовыми кольцами толщиной в 1 см. Кольца служили камерами с раствором,. каждая из которых связывала мембрану с Ag-элeктpoдoм и имела две трубки (для заполнения и слива раствора). Напряжение подавалось на два крайних серебряных диска. Серебряные диски были покрыты хлор-ионом и служили обратимыми электродами. Ток пропускался до изменения концентрации раствора на 207о- В результате опытов определялись числа переноса воды и катиона. [c.71]

    Таким образом, диффузионное неренапряжение определяется в первую очередь предельной плотностью тока щ1) пли величиной константы /Сд, Предельная плотность тока по теории Нернста — Бруннера, как это следует из ург.внения (15.28), зависит прежде всего от коэффициента диффузии соответствующих частиц , их заряда 2 , начальной концентрации Сг° (или, что то же самое, концентрации за пределами диффузионного слоя) и толщины диффузионного слоя б. Числа переноса данного внда ионов ii, как ул< е отмечалось, могут быть сделаны равными нулю кроме того, миграция вообще отсутствует в случае незаряженных частиц. Коэффициент диффузии можно либо рассчитать, либо заимствовать из экспериментальных данных определение начальной концентрации С также не представляет затруднений. Наименее определенной величиной является толщина диффузионного слоя, которая не может быть рассчитана в рамках теории Нернста—Бруннера. Ее определяют экспериментально, чаще всего из измерения предельной илотности тока. Опытные данные показывают, что б весьма мало зависит от состава раствора, но замс но меняется при изменении режима движения электролита. Эту зависимость можно передать эмпирической формулой [c.310]

    Измеряемые в методе Гитторфа концентрации и вычисляемые по ним изменения количества вещества в катодном и анодном пространствах определяются на самом деле не только количеством катионов и анионов, поступивщих в эти пространства и покинувших их, но, как получалось в рассмотренных выше случаях, и количеством растворителя, перенесенного этими ионами в виде сольватных оболочек. Оболочки ионов разных знаков неодинаковы по величине. Пусть средние числа молекул воды, входящих в сольватные оболочки ионов Н и С1, равны соответственно п и т. Тогда в разобранной выше схеме электролиза раствора H I при прохождении 1 фарадея электричества в катодном пространстве масса растворителя увеличится на T+/I — х-ш моль, а в анодном пространстве уменьшится на ту же величину. Здесь т+ и т- — уже истинные числа переноса. Существование рассмотренного эффекта можно легко установить, прибавив к электролиту недиссоциирующее на ионы вещество, например сахар или мочевину. После электролиза концентрация прибавленного неэлектролита (вычисленная по отношению к воде) окажется по-разному изменившейся у электродов, причем у одного из иих она увеличится, а у другого уменьшится. Учитывая изменения концентрации прибавленного неэлектролита при определении чисел переноса, можно ввести поправку на перенос воды из анодного пространства в катодное в виде сольватных оболочек и найти истинные числа переноса т+ и Т-. [c.448]

    Использование в качестве системы отсчета растворителя в целом позволяет учесть сольватационный перенос растворителя с ионами, не вводя при этом никаких В более ранних работах для оценки переноса растворителя при движении ионов в раствор вводили какое-либо нейтральное вещество (например, сахар), молекулы которого, как предполагалось, не входили в состав сольватных оболочек ионов, а потому, не должны были перемещаться. В этих условиях по изменению концентрации нейтрального вещества в приэлектродном пространстве (в методе Гитторфа) можно было рассчитать количество растворителя, которое было перенесено ионами, и оценить так называемые истинные числа переноса. Этот способ оценки истинных чисел переноса был предложен В. Уошборном. Недостаток метода Уошборна [c.73]

    Числа переноса остаются практически постоянными до тех пор, пока концентрация сильного электролита не превышает 0,2 г-экв/л-, при дальнейшем увеличении концентрации наблюдается их изменение. Например, для водного раствора Na I при 18° и с = 0,005 г-экв/л число переноса иона натрия равно 0,396, а при с==1,0 г-экв/л +=0,369 в соответствии с уравнением (VII, 95) числа переноса иона хлора при этом равны 0,604 и 0,631. [c.266]

    Пусть в результате протекания тока через ячейку на катоде выделится 1 г-экв. катионов, а на аноде точно такое же количество катионов перейдет в раствор примем также /г+М- = 3/2. Тогда из середины раствора в катодное пространство будет перенесено п+ г-экв. катионов серебра, и из катодного пространства исчезают (1—п+)=п г-экв. серебра, а также г-экв. анионов. Перенос анионов происходит, во-первых, в соответствии с введенным выше представлением о числах переноса, во-вторых, ввиду необходимости обеспечения электронейтральности раствора. Аналогичные соображения приводят к заключению о том, что в анодном пространстве появляются дополнительно п г-экв. азотнокислого серебра (ср. рис. Б.35). [Измерения концентрации в катодном и анодном пространстве используются для определения чисел переноса по методу Гиттор- фа.] Таким образом, изменение свободной энтальпии равно [c.318]

    Метод Гитторфа основан на измерении изменения концентраций ионов в катодном и анодном пространствах электролизера, вызванного прохождением через него постоянного тока. Пусть электролизер заполнен раствором AgNOa, а электродами служат две серебряные пластинки. При прохождении одного фарадея электричества на катоде из раствора катодного отделения выделится один моль металлического серебра, а в анодном отделении один моль Ag+ перейдет в раствор. В растворе ток переносится ионами в соответствии с их числами переноса. Поэтому t+ фарадея перенесут ионы Ag+, а — ионы N03.  [c.188]

    В центральной части капилляра, вне пределов двойного электрического слоя, числа переноса будут такие же, как и в сво-, бодном растворе без мембраны, так как подвижности и концентрации ионов раствора, наполняющего капилляр в центральной части и в свободном растворе, одинаковы. В цилиндрической оболочке, входящей в двойной слой, вследствие влияния электростатических сил поверхности, подвижности и концентрации находящихся там ионов будут отличаться от свободного раствора и поэтому числа переноса в этом слое будут иные, чем в свободном растворе. Очевидно, что при больших радиусах капилляра объем центральной его части, вне пределов двойного слоя, будет составлять подавляющую часть общего объема капилляра, и поэтому то изменение, которое вносится ионами диффузного слоя, ничтожно, и суммарное значение числа переноса по всему сечению капилляра не изменяется по сравнению со свободным раствором. [c.205]

    При выпаривании раствора образуются пары растворителя, кристаллизуются или растворяются твердые вещества, выделенные пары конденсируются или поглощаются, т. е. протекают межфазовые превращения. Во всех этих превращениях затрачивается работа на перенос массы через границу раздела фаз (Л,,) и изменение концентрации и массы компонентов раствора (Лкомп)- Значение рассчитывают с учетом поверхностного натяжения и изменения площади поверхности раздела фаз Р для каждой из фаз (Ф — число фаз), а Лкомп — по данным о химическом потенциале (Х и изменении концентрации dxj каждого компонента раствора  [c.227]

    Определите исходную концентрацию NaOH в анолите для гюлучения раствора указанного состава, если для процесса Sn —> Sn + выход по току принят равным 100 %, а для процесса Sn + Sn + Bj 90 %. Числа переноса = 0,82 и 0,18. Пренебречь участием в переносе тока ионов станнита, станната и ацетата, а также изменением объема раствора при процессе. [c.152]

    Для того чтобы оценить величину подобной поляризации, следует рассмотреть условия транспорта (переноса) ионов серебра из раствора к поверхности катода. Учтем, что на границе между металлом и раствором существует двойной электрический слой, о котором уже упоминалось в начале утой главы. Так как на катод наложен потенциал, обусловленный внешней э. д. с., то концентрация Ад+ в двойном слое Сп, т. е. у поверхности металла, отличается от концентрации этих ионов в объеме раствора Сп. Если на электрод наложен отрицательный потенциал, Сп<Со. Слой раствора, в котором происходит изменение концентрации от Со до Сп, называется диффузионным. Его толщина й зависит от условий перемешивания раствора. Наиример, при использовании пропеллерной мешалки величина б обратно пропорциональна квадрату числа оборотов мешалки в единицу времени. Так как ток через электролит переносится ионами, то его сила определяется числом ионов Ад+, которые могут переноситься диффузией за единицу времени из объема раствора с большей концентрацией к электроду, где концентрация меньше. [c.137]

    В значительном числе случаев катионы, имеюшие сравнительно небольшие размеры, отличаются большой подвижностью. В водных растворах особенно велика подвижность ионов водорода Н3О+. В расплавленных силикатах, а также фосфатах числа переноса катионов близки к единице. Экспериментальные определения числа переноса осно-вывзЕОтся на том, что при электролизе вследствие разной подвижности катионов и анионов происходят неодинаковые изменения концентрации электролита вблизи катода и анода. Если, например, катионы двигаются быстрее, чем анионы, то в анодном пространстве (анолите) вследствие этого будет наблюдаться большая убыль концентрации, чем в катодном пространстве (католите), разумеется, при отсутствии перемешивания растворов. Очевидно, анионы, которые останутся в анодном пространстве без катионов, разрядятся на аноде. Понятно также, что в результате электролиза количества выделившихся на электродах катионов и анионов будут эквивалентными и будет соблюдаться за- [c.199]

    Рассмотрим часть диаграммы для графического определения числа теоретических тарелок по методу Мак-Кэба и Тиле (рис. 86). Верхняя линия представляет собой кривую равновесия а, нижняя — рабочую линию Ь. В тарельчатой колонне между жидкостью с концентрацией / , находящейся на любой тарелке, и поднимающимися парами наступает термодинамическое равновесие. Пары, покидающие тарелку, имеют концентрацию у. Этой же концентрацией обладает и жидкость на вышерасположенной тарелке г/. . Между тарелками (т. е. между точками и у ) никакого обмена не происходит. Иначе обстоит дело в насадочной колонне, где изменение концентрации в каждом слое между у и у пропорционально у —у. Только в случае, когда кривая равновесия и рабочая линия параллельны друг другу (рис. 86, II), число единиц переноса Па совпадает с числом теоретических тарелок поскольку в рассматриваемой области концентраций разность у —у остается постоянной. Такой случай имеет место в идеальных растворах с малой разностью температур кипения, исполь- [c.141]

    НИИ концентраций катионов и анионов в капилляре 7777777777777777777777777777 и в растворе вне капилляра невелика и числа переноса в капилляре мало отличаются от чисел переноса Рис. VIII, 14. Изменение в растворе. Однако с уменьшением диаметра капил- соотношения коицентра-ляра, когда он становится соизмеримым с толщиной ций катионов и анионов Двойного электрического слоя, в капилляре увели- в капилляре с отрнца-чивается концентрация катионов, что вызывает уве- тельно заряженной по-личение числа переноса катионов и уменьшение числа верхиостью при умень-переноса анионов. В пределе, когда диаметр капил- шении его диаметра, ляра равен удвоенной толщине двойного электрического слоя, изменение чисел переноса будет максимальным. Изменение соотношения концентраций катионов-и анионов в капилляре с отрицательно заряженной поверхностью при уменьшении его диаметра можно видеть из схемы, приведенной на ряс. VIII, 14. Аналогичным образом можно объяснить большую проницаемость положительно заряженных мембран для анионов. [c.257]


Смотреть страницы где упоминается термин Числа переноса по изменению концентрации раствора: [c.188]    [c.440]    [c.162]    [c.128]    [c.129]    [c.257]    [c.207]    [c.146]    [c.151]    [c.170]    [c.65]    [c.113]    [c.216]   
Теоретическая электрохимия (1959) -- [ c.76 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Концентрация растворов

Переноса числа и концентрация

Числа переноса

Число в растворах



© 2024 chem21.info Реклама на сайте