Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбиды сплавов

    Большой интерес представляют сплавы на основе карбидов, нитридов, боридов и силицидов ниобия и тантала, отличающиеся исключительной твердостью, химической инертностью и жаростойкостью. [c.542]

    Прн накаливании смеси бора с углем образуется карбид бора В4С. Это тугоплавкое вещество (темп, плавл. около 2350 °С), обладающее очень высокой твердостью и химической стойкостью. Карбид бора применяется для обработки твердых сплавов его механические свойства сохраняются при высоких температурах. [c.631]


    Карбид вольфрама С обладает очень высокой твердостью (близкой к твердости алмаза), износоустойчивостью и тугоплавкостью. На основе этого вещества созданы самые производительные инструментальные твердые сплавы. В их состав входит 85— 95% УС и 5—15% кобальта, придающего сплаву необходимую прочность. Некоторые сорта таких сплавов содержат, кроме карбида вольфрама, карбиды титана, тантала и ниобия. Все эти сплавы получают методами порошковой металлургии и применяют главным образом для изготовления рабочих частей режущих и буровых инструментов. ...........  [c.661]

    С соответствующими металлами кобальт, родий и иридий образуют твердые растворы и интерметаллические соединения, что определяет физико-химические и механические свойства их сплавов. Особо широко используются кобальтовые сплавы. Многие из них жаропрочны и жаростойки. Например, сплав виталлиум (65% Со, i8% Сг, 3% Ni и 4% Мо), применяемый для изготовления деталей реактивных двигателей и газовых турбин, сохраняет высокую проч-I ость и практически не подвергается газовой коррозии вплоть до 800—900°С. Имеются также кислотоупорные сплавы, не уступающие платине. Кобальтовые сплавы типа алнико (например, 50% Fe, 24% Со, 14% Ni, 9% А п 3% Си) применяются для изготовления постоянных магнитов. Для изготовления режущего инструмента важное значение имеют так называемые сверхтвердые сплавы, представляющие собой сцементированные кобальтом карбиды вольфрама (сплавы ВК) и титана (сплавы ТК). Большое значение имеет кобальт как легирующая добавка к сталям. [c.596]

    Реактивы, выделяющие при взаимодействии с водой горючие газы,— щелочные, щелочноземельные металлы и их сплавы, гидриды, карбиды, боргидриды и амиды щелочных металлов. [c.37]

    В результате расширения области применения неметаллических тугоплавких соединений, обладающих высокой твердостью, износостойкостью, жаропрочностью и химической стойкостью, возникает необходимость в армировании железоуглеродистых поверхностей этими материалами. Как показывает опыт, создание на основе тугоплавких соединений (особенно на основе карбидов бора и кремния) высокоэффективных наплавочных материалов — сложная задача, решению которой в значительной степени способствуют сведения о поведении карбидов при контакте с различными расплавленными металлами и сплавами, о смачиваемости тугоплавких карбидов сплавами на основе железа. [c.125]

    Соединяясь с углеродом, титан образует карбид. Из карбидов титана и вольфрама с добавкой кобальта получают сплавы, по твердости приближающиеся к алмазу. [c.650]


    В некоторых случаях наличие примесей в сплаве, в частности углерода в хромистых сталях, склонного к образованию карбидов хрома и железа, вызывает необходимость увеличения содержания легирующего элемента па то количество, которое расходуется па образование этих карбидов, с таким расчетом, чтобы содержание хрома в [c.128]

    Иногда пользуются ситами из сплава платины с 5—10% родия при этом потери катализатора почти в 6 раз больше, чем при окислении аммиака, а активность катализатора падает значительно быстрее из-за отложений углерода, кристаллизации металла и образования карбидов платины. [c.309]

    Металлические карбиды входят в состав чугуиов и сталей, придавая им твердость, износоустойчивость и другие ценные качества. На основе карбидов вольфрама, титана и тантала производят сверхтвердые и тугоплавкие сплавы, применяемые для скоростной обработки металлов. Такие сплавы изготовляют методами порошковой металлургии (спрессовыванием составных частей при нагревании) в качестве цементируюш,его материала чаш,е всего используют кобальт и никель. Сплав, состоящий из 20% Hf и 80% ТаС, — самый тугоплавкий из известных веществ (т. пл. 4400°С). [c.399]

    Они могут одновременно быть горючими и окрашивающими пламя, как, например, гидриды, карбиды, сплавы, СиЗ, u NS, швейнфуртская. зелень. ЗСи(А802) Си(С2Нз0з)2 и др. К этой группе можно отнести и соли щавелевой кислоты, так как прп разложении их образуется 1 молекула окиси углерода, способная к горению. Рецепты подобных составов могут быть получены из двух компонентов. Обычно число компонентов применяемся более двух. [c.89]

    Кальций — металлический, гидрид амид,- карбид, сплавы, кальцийорганические соединения,- алкоголяты,- комплексные соединения, соли органических киелот  [c.120]

    Кальц Моно- или диолефи-новый углеводород ИЙ металлический, гидр Изомеризац Изомеры с перемещенными двойными связями ид, амид, карбид, сплавы кальция ия структурная a(NHj)a [263] [c.143]

    Применяют для ФО циркония в сталях, карбидах, сплавах магния [216], ЭФО циркония при наличии гафния в соединениях иттрия, РЗЭ [69], ФлО олова, сурьмы в рудах [634], бериллия [414], циркония [69], гафния [444], европия в иодидах 68], ФлТТ бериллия, алюминия, циркония, галлия, индия, скандия в феррите, биотите [158, с. 98—104]. [c.172]

    Металлические и металлоподобные соединения. Подобно другим d-элелентам,. железо с малоактивными неметаллами образует соединения типа металлических. Так, с углеродом оно дает карбид состава Fej (потентат), твердые растворы аустенит — раствор С и -Ре феррит. — раствор С в а-Ре), эвтектические смеси (железа с углеродом, цементита с аустенитом, железа с цементитом и др.). Изучение условий образования и свойств соединений железа с углеродом имеет большое значение для понимания структуры, состава и свойств железоуглеродистых сплавов. В зависимости от условий кристаллизации и состава расплава Ре—С структура и соотношения компонентов существенно меняются, а следовательно, изменяются и физико-химические свойства получаемых сплавов. [c.583]

    Диаграмма состояния системы железо — углерод, дающая представление о строении железоуглеродных сплавов, имеет очень большое значение. С ее помощью мол<но объяснить зависимость свойств сталей и чугунов от содерл<ання в них углерода и от термической обработки. Она служит основой при выборе железоуглеродных сплавов, обладающих теми или иными заданными свойствами. Ниже (рис. 168) приведена часгь диаграммы состояния системы Ре — С, отвечающая концентрации углерода от О до 6,67%, или, что то же самое, от чистого железа до карбида Ре С. [c.674]

    Мембраны из поликомпонентных сплавов на основе палладия, серебра и никеля допускают эксплуатацию при температурах до 600 °С, при этом необходима предварительная очистка разделяемой газовой смеси от серосодержащих соединений, окиси углерода, галогеивдов и других примесей, которые способны образовывать с металлами устойчивые химические соединения (гидриды, карбиды, нитриды, оксиды), снижающие скорость диффузии. Следует помнить, что при более низких температурах, помимо снижения коэффициента диффузии, падает скорость диссоциации газа и химическая стадия процесса проницания становится лимитирующей. [c.119]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]


    До создания такого процесса прессованные трубы имели недостаточную прочность на разрыв, оказывали низкое сопротивление ползучести и имели малую длительную прочность. Попытки увеличить прочность добавлением в сплав легирующих элементов оказывались безуспешным1т прочность возрастала незначительно, но вместе с тем существенно усложнялась термообработка. Микроструктура материала прессованных труб, подвергнутых термообработке, приблизилась в некоторой степени к микроструктуре сплава НК-40. Если прежде крупные карбиды стали прессованной трубы были рассеяны по границам зерен и внутри них, то после обработки новым методом формируется сплошная решетчатая система карбидов вследствие предпочтительного осаждения их по границам зерен. [c.35]

    Применение. Железо и его сплавы составляют основу современной техники. Никель является одной из важных Легирующих добавок к сталям. Широко применяются жаростойкие сплавы на основе никеля (нихром, содержащий N1 и Сг, и другие). Из медно-иикелевых сплавов (мельхиор и другие) изготовляют монеты, украшения, предметы домашнего обихода. Большое практическое значение имеют многие другие никель- и кобальтсодержащие сплавы. В частности, кобальт используется как вязкая составная часть металлорежущего инструмента, в которую вкраплены ис-1слючительно.твердые карбиды МоС и W . Гальванические покрытия металлов никелем предохраняют их от коррозии и придают им красивый внешний вид. [c.569]

    Соотношение между количествами углерода и хрома определяет структурные особенности двойной системы Ре — Сг. тле-род образует с хромом ряд весьма проч. ых карбидов и по этой причине уменьшает концентрацию хрома в твердом растворе. Известны три типа карбидов хрома кубический СггзСе, триго-нальный СГ7С3 и орторомбпческий СГ3С2. В области высокоуглеродистых сплавов суш,ествует еще один карбид СгС, но этот кар-бпд при температурах ниже 1800 С не встречается, так как он [c.210]

    В тройной системе Ре — Сг — С образуются преимущественно сло.ч<ные химические соединения типа (СгРе)2зСб и (СгРе)7Сз. Количество карбидов и их состав зависят от содержания в сплаве углерода. Карбиды растворяются в более или менее значительных количествах в у-фазе и в очень малых количествах в а-фазе. Выпадение карбидов влечет за собой нарушение одмофазиос-ти сплава, что сказывается на коррозионной стойкости хромистых сталей. [c.210]

    С углеродом титан взаимодействует лишь при высокой температуре с образованием сплава, содержащего карбид титана Т1С. Титан при высокой температуре способен также реагировать одновременно с углеродом и азотом с образованием карбонитрида титана Т15СЫ4. [c.263]

    Таким образом, следует считать, что минимальное содержание хрома в малоуглеродистых хромистых сталях, обладающих коррозионной с. тойкостью в агрессивных средах, должно быть ие менее 13—15%. Коррозионная стойкость хромистых сталей в значительной степени зависит от содержания в них углерода. Так, в сталях, содержащих 13—15% Сг, наблюдается резкое разблагораживание потенциала при содержании углерода 0,3—0,4%-Чем больше содержание углерода в сплаве, тем больше хрома расходуется на образование карбидов и тем больше обедняется твердый раствор хромом. Сталь 1X13 при прочих равных условиях имеет более высокую коррозионную стойкость, чем сталь 2X13, а последняя обладает повышенной коррозионной стойкостью по сравнению со сталью 3X13 и т. д. [c.214]

    Из диаграммы видно, что вероятность образования карбн.аов возрастает с увеличением содержания в сплаве углерода. Прн высоком содержании углерода ка1)биды не будут нолностьк> растворяться в сплаве даже при температуре 1100° С. С понижением температуры возможно выиадепне карбидов при достаточно длительном отпуске вплоть до температуры 300°С, причем выпадение карбидов наблюдается по границам зерен, что ухудшает свойства сплава. Неустойчивость аустенита проявляется [c.220]

    В Советском Союзе распространены две марки железокремнистых сплавов (кремнистых чугунов), различающиеся содержанием кремния и углерода С15 (0,5—0,8% С, 14,5—157о Si) и С17 (0,3—0,8% С, 16,0—18,0% Si). Чем больше в сплаве кремння, тем меньше должно быть углерода. Оптнму.л])Ное содержание углерода соответствует эвтектическому составу для. данного сплава. Благодаря большому сродству кремния к железу, углерод не дает карбидов железа. Силав С17 применяется в тех случаях, когда требуются отливки с повышенной коррозионной стойкостью. [c.239]

    Высокохромистые чугуны приобретают коррозионную стойкость только при ус,яовии содержания хрома в твердом растворе (не считая хрома, связанного с углеродом чугуна) в количестве, достаточном для достижения устойчивости согласно правилу п/8, т. е. не менее 11,7% масс. Так как наибольшее распространение получили чугуны с 28—35% Сг и 1,0—2,2% С, значительная часть углерода чугунов связывается в карбиды, преимущественно типа СгуСз, на образование которых расходуется 10— 22% Сг (1% С связывает около 10% Сг). Таким образом происходит сильное обеднение твердого раствора хромом, и в большинстве случаев содержание свободного хрома в высокохромистых чугунах не выходит за пределы первого порога устойчивости. Этим объясняется сравнительно невысокая коррозионная стойкость этих чугунов по сравнению с высокохромистыми сталями. При увеличении содержания хрома свыше 35— 36% твердость высокохромистых сплавов значительно повышается, что ухудшает их обрабатываемость. Кроме того, при содержании хрома свыше 40% эти чугуны становятся хрупкими вследствие выделения прн медленном охлаждении 6-фазы (интерметаллического соединения РеСг). [c.243]

    Как уже указывалось, титан способен взаимодействовать с углеродом лишь при высоких температурах. В системе титан — углерод при этих условиях образуются очень твердые сплавы, содержащие карбид титана Т1С — кристаллическое металлоподобное вещество с температурой плавления 3140°С, и ряд твердых растворов. Карбид титана проводит электрический ток, легко сплавляется с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре карбид титана довольно инертен, при высоких же температурах ведет себя подобно элементарному титану — реагирует с галогенами, кислородом, серой, азотом, а таклсе с кислотами и солями — окислителями с образованием продуктов, аналогичных получающимся при действии на элементарный титан. Подобные карбиду соединения титан образует с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.270]

    Использование кобальта в технике. Кобальт используется как легирующий металл в сталях, придавая им особые свойства (стали нержавеющие, инструментальные, с особыми магнитными свой-стками). Кобальт также является основой жаропрочных сплавов, леп ,юваниь х титаном, хромом, молибденом и другими металлами, Большое количество кобальта иснользуется в производстве сверхтвердых материалов на основе карбидов титана и вольфрама. [c.315]


Смотреть страницы где упоминается термин Карбиды сплавов: [c.739]    [c.9]    [c.262]    [c.395]    [c.330]    [c.331]    [c.422]    [c.614]    [c.645]    [c.666]    [c.669]    [c.671]    [c.163]    [c.220]    [c.221]    [c.277]    [c.25]    [c.155]    [c.63]    [c.8]    [c.356]   
Методы разложения в аналитической химии (1984) -- [ c.271 ]




ПОИСК





Смотрите так же термины и статьи:

Молибдена сплавы, электролитическое выделение карбидов

Ниобия сплавы электролитическое выделение карбидов

Области применения карбидов вольфрама и сплавов на их основе

Получение изделий и покрытий из карбидов вольфрама и их сплавов

Получение покрытий из карбидов вольфрама и его сплавов

Попова и А. Ф. Платонова — Электролитическое выделение карбидов ниобия в ниобиевых сплавах

Сплавы жаропрочные иа основе кобальта и никеля вид карбидов

Сплавы карбидов вольфрама и титана

Сплавы монокарбида вольфрама W с карбидами переходных металлов

Хлорирование простых веществ, металлических сплавов и карбидов



© 2024 chem21.info Реклама на сайте