Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределения вероятности функци и собственные состояни

    Таким образом, описание стационарного состояния электрона в водородоподобном атоме дает атомная орбиталь — одноэлектронная волновая функция, характеризуемая совокупностью трех квантовых чисел п, / и /И/. При помощи ее можно рассчитать распределение электронной плотности в атоме и определить форму электронного облака вероятности. Атомные орбитали, являющиеся собственными функциями уравнения Шредингера, ортонорм 1лррваны, т. е. подчиняются условию (3.12)  [c.23]


    Переход от стационарного состояния к автоколебательному режиму, индуцированный внешним шумом, изучался в работе [27]. В этой работе была рассмотрена модель Лоренца (см. (4.5.1)) при значениях параметров, когда она еще не обладает собственным хаотическим поведением, а имеет два устойчивых стационарных состояния l ж Сявляющиеся устойчивыми узлами-фокусами, так что малые отклонения от них затухают с осцилляциями. Чтобы учесть тепловые флюктуации, в правые части уравнения (4.5.1) вводились дельта-коррелированные случайные функции (шумы), и получающаяся система исследовалась на ЭВ1И. Было обнаружено, что при малых интенсивностях шумов стационарное распределение вероятности имеет максимумы в точках и g, где были расположены устойчивые стационарные состояния детерминистической модели. Если, однако, увеличивать интенсивности шумов, то при превышении некоторого критического значения происходит качественная перестройка функции распределения. В точках i и С2 стационарное распределение вероятности достигает теперь уже минимума, и они окружены кольцевыми максимумами вероятности. Рассмотрение траекторий движения системы под воздействием внешнего шума Показало, что она совершает возмущенные периодические колебания, проводя почти все время в области кольцевых максимумов вероят- [c.209]

    Более подробно это будет обсуждаться в разд. 2.4.) Такая формулировка средних величин поразительно схожа с формализмом квантовой механики, задаваемым через функцию состояния . Более того, как мы видели, уравнения, которым удовлетворяют и имеют одинаковую математическую структуру. Аналогия простирается и далее. Ранее мы нашли, что решение уравнения Лиувилля можно выразить через ряды по собственным состояниям оператора Л, т. е. по функциям ехр (— сОпО X X фп (р, ч) (см. уравнение (2.64)). Каждая такая функция, будучи решением уравнения Лиувилля, представляет возможное независимое состояние системы. Для многомерных периодических систем расширенные собственные состояния ехр ( Есог г )-фп (01,. . 0N) становятся связанными с собственными колебаниями такой системы. Задача с начальными данными, решение которой дается выражением (2.101), иллюстрирует значение элементов матрицы (п 1 бЛ 1 п ). Коэффициент — это распределение собственных состояний, характеризуемых вектором п. Элементы (п 1 бЛ 1 п ) пропорциональны вероятности того, что взаимодействие бЛ индуцирует переход от множества п к множеству п. Для очень слаб1ых взаимодействий, когда е, имеют место только переходы первого порядка тогда как если 8 значительно, то и переходы второго порядка будут вносить вклад в скорость изменения (0). В переходах второго порядка бЛ означала индуцирует изменение от п" до п, а затем от п до п. [c.77]


    СКИХ уровней, энергии которых могут быть определены при детальном анализе атомных спектров. Отсюда следует, что в волновой модели атома должны быть квантованные энергетические уровни, точно так же как в атомных моделях, построенных по экспериментальным данным. В волновой механике квантованное энергетическое состояние называют собственным значением. Итак, для каждой собственной функции существует соответствующее собственное значение. Интерпретация этого термина довольно сложна. Она основана на аналогии со светом (имеющим также волновую природу), интенсивность которого в данной точке пропорциональна квадрату амплитуды световой волны в этой точке. Аналогично интенсивность электронной волны пропорциональна г з . Однако эта идея сама по себе дает довольно мало информации, и поэтому приходится прибегать к одному из двух следующих способов ее интерпретации. Согласно первому из них, предполагается, что электрон движется вокруг ядра по пути, который не обязательно имеет сферическую симметрию. В этом случае 1)3 представляет собой величину, характеризующую зависящее от времени распределение отрицательного заряда вокруг ядра. Эту динамическую модель электрона довольно трудно себе представить, и она может быть заменена на эквивалентную статическую модель электрона в виде облака отрицательного заряда, распределенного (не обязательно сферически) вокруг ядра, причем плотность заряда в любой элементарной ячейке пространства dxdydz) будет пропорциональна йх йу йг). Эквивалентность этих двух моделей становится очевидной, если представить себе, что ноло-/кения движущегося электрона будут отмечаться точками в пространстве в течение значительного промежутка времени. Плотность точек на этом графике будет выглядеть как облако статического заряда. Согласно второй интерпретации 113 (использование которой более оправдано именно в этой интерпретации, поскольку в ней не принимается, что электрон размазан в пространстве), электрон рассматривается как частица и вероятность его наблюдения в любой точке в канадый момент пропорциональна величине я)) для этой точки. Обе интерпретации полезны. В последней отражен принцип неопределенности Гейзенберга, согласно которому невозможно точно описать и местонахождение электрона в атоме и его энергию (или момент) в одно и то же время. Так, если точно известна энергия уровня, на котором находится электрон, то нельзя проследить его точную орбиту (подобную предложенной Бором). Вместо этого для данного энергетического уровня существует атомная орбиталь несколько размытой формы, определяемой значением вероятности для всех ее точек. Такая орбиталь, обычно обозначаемая как АО, принимает определенную форму, лишь если пренебречь теми ее областями, где вероятность нахождения электрона очень мала. С другой стороны, интерпретация по типу модели облака заряда является несравненно более полезной при наглядном изобрал<ении химической связи. [c.33]

    Если в /-Й группе имеется g собственных функций, т. е. если группа имеет -кратное вырождение, то элементов в этой группе может быть распределено различными способами. Общее число собственных состояний или квантовых уровней для л элементов, которое является мерой вероятности Р этого частного распределения, определяется выражением [c.166]

    Итак, мы получили значение энергии и соответствующую функцию г ) для атома водорода. Такие значения энергии называют собственными значениями, а отвечающие им 1 5-функции — собственными функциями. Ниже будет показано, что решения уравнения Шредингера имеют несколько собственных значений и собственных функций. Рассмотрим сначала полученное нами собственное значение. Величина Е — отрицательная, следовательно, это энергия, которая выделяется при связывании электрона. Значения т, е и к известны, поэтому мы можем вычислить энергию, соответствующую нашему решению, Е = —13,5 эВ. Это энергия основного состояния атома водорода. Полученное значение хорошо согласуется с экспериментальным значением энергии ионизации атома водорода. Этому собственному значению энергии отвечает распределение вероятности, описываемое экспоненциальной функцией. Следует обратить внимание на следующее. Вероятность W того, что электрон находится в некотором элементе объема йт, пропорциональна Рассмотрим сферическую оболочку с радиусом г и толщиной с1г (лучше всего представить себе кожуру апельсина). Известно, что объем такой сферы равен 4пгЧг. Следовательно, пропорциональна и, таким образом, учитывая уравнение (15а), пропорциональна [c.56]

    Но квадрат этой функции равен квадрату исходной ipu = i>ii. Поэтому антисимметричная функция, казалось бы, тоже прпгодна для описания состояния электрона в молекуле. При применении этой функции перестановка двух электронов не изменяет распределения вероятности нахождения электронов в пространстве состояние системы не меняется. Но, в действительности, описание, содержащее только указания, где находится электрон еще не исчерпывает всех характеристик электрона. Электрон обладает собственным моментом количества движения,. характеризуемым спином, [c.108]



Смотреть страницы где упоминается термин Распределения вероятности функци и собственные состояни: [c.60]    [c.35]    [c.141]   
Теоретическая химия (1950) -- [ c.382 ]




ПОИСК





Смотрите так же термины и статьи:

Вероятность

Вероятность состояния

Распределение вероятности

Собственные

Состояние собственное

Функции состояния

Функция распределения



© 2025 chem21.info Реклама на сайте