Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проницаемость при обратном осмосе и ультрафильтрации

    Разделение методами обратного осмоса и ультрафильтрации принципиально отличается от обычного фильтрования. При обратном осмосе и ультрафильтрации образуются два раствора концентрированный и разбавленный, в то время как при фильтровании осадок откладывается на фильтровальной перегородке. В процессе обратного осмоса и ультрафильтрации накопление растворенного вещества у поверхности мембраны (вследствие концентрационной поляризации) недопустимо, так как при этом резко снижаются селективность (разделяющая способность) и проницаемость (удельная производительность) мембраны, сокращается срок ее службы. [c.519]


    Как и всем мембранным методам, обратному осмосу и ультрафильтрации свойственно явление концентрационной поляризации, которое заключается в увеличении концентрации растворенного вещества у поверхности мембраны вследствие преимущественного переноса растворителя через мембрану. В результате происходит падение проницаемости и селективности, сокращается срок службы мембран. Для уменьшения вредного влияния концентрационной поляризации необходимо турбулизовать прилегающий к поверхности мембраны слой жидкости, чтобы ускорить перенос растворенного вещества в ядро разделяемого раствора. Этого добиваются применением в лабораторных установках магнитных мешалок и вибрационных устройств, а в промышленных условиях увеличением скорости протекания жидкости вдоль мембраны и использованием различного рода турбулизаторов. [c.18]

    Баромембранные процессы (обратный осмос, ультрафильтрация, микрофильтрация) обусловлены градиентом давления по толщине мембран, в осн. полимерных, и используются для разделения р-ров и коллоидных систем при 5-30 °С. Первые два процесса принципиально отличаются от обычного фильтрования. Если при нем продукт откладывается в виде кристаллич. или аморфного осадка на пов-сти фильтра, то при обратном осмосе н ультрафильтрации образуются два р-ра, один нз к-рых обогащен растворенным в-вом. В этих процессах накопление данного в-ва у пов-сти мембраны недопустимо, т.к. приводит к снижению селективности и проницаемости мембраны (о различии между микрофильтрацией и фильтрованием см. ниже). [c.24]

    Обратный осмос и ультрафильтрация имеют принципиальное отличие от обычной фильтрации. Если при фильтрации продукт откладывается в виде кристаллического или аморфного осадка на поверхности фильтра, то при обратном осмосе и ультрафильтрации образуется два раствора, один из которых обогащен растворенным веществом. В этих процессах накопление растворенного вещества у поверхности мембраны недопустимо, так как приводит к резкому снижению селективности и проницаемости мембраны. [c.17]

    Следовательно, экспериментальные зависимости хорошо согласуются с выводами капиллярно-фильтрационной модели механизма полу-проницаемости. Следует ожидать, что данный подход с учетом взаимного влияния ионов и внешних факторов на процесс гидратации, а также с учетом влияния электролитов на толщину адсорбционных слоев растворителя даст возможность разработать количественную теорию обессоливания растворов обратным осмосом. Однако решение этой задачи невозможно без точного определения размеров пор и их распределения, толщины слоя связанной жидкости на внутренней поверхности пор при течении жидкости под действием градиента давлений. Уместно отметить, что и для процесса ультрафильтрации определение толщины слоя связанной жидкости также имеет важное значение, особенно при сравнительно небольших диаметрах пор (порядка 5 30 нм, или 50—300 А). Как было показано выше (см. стр. 105), в этом случае толщина слоя связанной жидкости становится соизмеримой с радиусом пор ультрафильтров. [c.211]


    Ультрафильтрация - мембранный процесс разделения растворов, осмотическое давление которых мало. Этот метод используется при отделении сравнительно высокомолекулярных веществ, взвешенных частиц, коллоидов. Ультрафильтрация по сравнению с обратным осмосом - более высокопроизводительный процесс, так как высокая проницаемость мембран достигается при давлении 0,2-1 МПа. [c.93]

    Методом обратного осмоса, при котором предел проницаемости мембран очень низок (менее 100 Да), разделение производится между водой и другими молекулами. Благодаря этому он может служить для концентрации растворов без тепловой обработки. Эта технология малопригодна для приготовления традиционных изолятов. Наоборот, она может найти применение для концентрации предварительно изолированных белков или методом разделения на мембране (электродиализ, ультрафильтрация), или посредством избирательного разделения с использованием ионообменных смол. Однако окончательная концентрация ограничена быстрым увеличением осмотического давления среды и слабым сопротивлением мембран давлению, а также крайним значениям pH или температурам. Наоборот, электродиализ пригоден как средство отбора для приготовления очищенной воды, даже из более или менее концентрированных солевых растворов. С этой точки зрения он может найти применение для частичного рециклирования воды из стоков при осаждении. [c.446]

    Пористые мембраны нашли широкое применение прежде всего в процессах обратного осмоса, микро- и ультрафильтрации, реже-для разделения газов. Они имеют как анизотропную, так и изотропную структуру. Мембраны с анизотропной структурой имеют поверхностный тонкопористый слой толщиной 0,25-0,5 мкм (называемый активным, или селективным), представляющий собой селективный барьер. Компоненты смеси разделяются именно этим слоем, располагаемым со стороны разделяемой смеси. Крупнопористый слой толщиной примерно 100-200 мкм, находящийся под активным слоем, является подложкой, повышающей механическую прочность мембраны. Мембраны с анизотропной структурой характеризуются высокой удельной производительностью, более медленной закупоркой пор в процессе их эксплуатации. Срок службы этих мембран определяется главным образом химической стойкостью материала мембран в перерабатываемых средах. Для мембран с изотропной структурой характерно быстрое снижение проницаемости вследствие закупорки пор коллоидными или взвешенными частицами, часто содержащимися в разделяемых растворах. [c.315]

    ДИАФИЛЬТРАЦИЯ, способ осуществления мембранных методов разделения р-ров (гл. обр. обратного осмоса и ультрафильтрации), используемый в тех случаях, когда проницаемость мембраны по отношению к разл. компонентам р-ра сильно различается. При Д. в мембранный аппарат с разделяемым р-ром дополнительно вводится р-ритель, расход к-рого обычно равен кол-ву отбираемого из аппарата филь-трата. Компонент р-ра, плохо задерживаемый мембраной, переходит вместе с вводимым р-рителем в фильтрат компонент, селективно задерживаемый мембраной, остается в аппарате, что позволяет практически нацело разделить компоненты р-ра. Д. примен., вапр., для очистки р-ров полимеров от минер, солей. Достоинства способа — высокая степень разделения, простота конструктивного оформления, низкие эксплуатац. расходы. [c.161]

    В связи со все возрастающим значением защиты водоемов от сбросов различных примесей с промышленных предприятий, в том числе и с ВПУ ТЭС, в последние годы возросло внимание к безреагентным методам для обессоливания воды. В настоящее время наиболее разработаны для практического применения мембранные методы. Известно несколько видов мембранных процессов ультрафильтрация, обратный осмос (гиперфильтрация), электродиализ, диализ. В основе всех мембранных методов лежит перенос примесей или растворителей через мембраны. Природа сил, вызывающих этот перенос, может быть различной. Соответственно различаются и мембраны, применяемые в таких процессах. При использовании сил давления (ультрафильтрация и обратный осмос) мембраны должны пропускать растворитель (воду), в максимальной степени задерживая ионные и молекулярные примеси. При использовании электрических сил мембраны должны быть проницаемы для ионов и не должны пропускать воду [23, 35, 41]. [c.120]

    Обратный осмос (гиперфильтрация) представляет собой процесс разделения растворов фильтрованием через мембраны с порами примерно 10 А, которые проницаемы для молекул воды,но непроницаемы для гидратированных ионов или молекул недиссоциированных соединений. Ультрафильтрация — разделение растворов веществ, состоящих из низко-и высокомолекулярных соединений, с помощью мембран (размер пор от 50 до 2000 А), которые непроницаемы только для высокомолекулярных соединений, коллоидных частиц и взвесей. [c.474]

    Еще более высокие показатели селективности и проницаемости имеют промышленные мембраны для обратного осмоса и ультрафильтрации, выпускаемые зарубежными фирмами. В частности, промышленные ультра-фильтрационные мембраны Дженерал электрик имеют показатель проницаемости 57 600 л/м ч [265]. [c.475]


    Баромембранные процессы. К основным мембранным методам разделения жидких систем относят обратный осмос, ультра-и микрофильтрацию. Деление указанных методов в значительной мере условно и базируется, как правило, на размерах пор соответствующих мембран. Однако, по-видимому, наименее формальным следует считать разграничение методов ультра- и микрофильтрации по фазовым состояниям разделяемых систем (соответственно, растворы и суспензии), а методов ультрафильтрации и обратного осмоса — по механизму проницаемости (соответственно вязкое течение и активированная диффузия) [67]. [c.384]

    Эффективность процессов обратного осмоса и ультрафильтрации в значительной мере определяется свойствами применяемых мембран, которые должны отвечать следующим требованиям высокой разделяющей способностью (селективностью), высокой удельной проницаемостью, устойчивостью к действию среды, неизменностью [c.101]

    Основными характеристиками ультрафильтрации и обратного осмоса являются проницаемость и селективность мембран. Проницае.мость (или дельная производительность) выражается количеством фильтрата I , отнесенны.м к единице времени т и единице поверхности s мембраны  [c.287]

    При разделении растворов веществ с большой молекулярной массой (>500) применяют мембраны с порами большего диаметра, чем при разделении низкомолекулярных веществ. Эти мембраны имеют значительно большую проницаемость. Следовательно, при ультрафильтрации наблюдаются большие конвективные потоки по направлению к мембране и требуются более жесткие условия для снижения концентрационной поляризации, чем при обратном осмосе. Чтобы повысить скорость ультрафильтрации, а тем более микрофильтрации, приходится интенсивно перемешивать раствор или прокачивать его с большой скоростью (до 3—5 м/с) над мембраной. Однако в ряде случаев такой прием не приемлем, так как приводит к резкому [c.70]

    Метод расчета эмпирических корреляций по влиянию концентрации растворенных веществ и гидродинамических условий нашел развитие в работах Ю. И. Дытнерского и Р. Г. Кочарова и базируется на экспериментально изученных зависимостях селективности и проницаемости от концентрации растворенных веществ и гидродинамических условий в аппаратах обратного осмоса и ультрафильтрации [186—188]. Во всех случаях предполагается, что процесс проводится при постоянном давлении и постоянной температуре. [c.230]

    Предполагается, что разделение происходит при постоянных давлении и температуре. Постоянство температуры во всех случаях является вполне оправданным допущением как правило, обратный осмос и ультрафильтрацию проводят при температуре окружающей среды, и изменение температуры может быть связано с теплотой концентрирования, что на практике не превышает долей градуса. В некоторых случаях возможно проведение процесса при повышенных температурах (до 40—50°С) с целью снижения вязкости раствора, повышения удельной проницаемости и селективности мембран. При этом изменение температуры, связанное с тепловыми потерями аппарата, может достигнуть нескольких градусов. Однако и такое изменение мало влияет на удельную производительность и селективность мембраны. [c.168]

    Ультрафильтрация в узком плоском симметричном канале. При ультрафильтрации нельзя пренебречь диффузионным потоком дисперсной фазы. При низких проницаемостях мембран возможны такие условия, когда диффузионный поток растворенного вещества, направленный от мембраны к оси канала, будет сравним с конвективным, направленным к мембране, и тогда концентрация вещества у мембраны Со окажется ниже концентрации гелеобразования Сз. В этом случае расчет аналогичен расчету процесса обратного осмоса, рассмотренного выше. [c.195]

    Влияние проницаемости на коэффициент трения. При разделении растворов обратным осмосом удельная проницаемость обычно не превышает 0,5-10 см /м и практически не влияет на коэффициент трения %. Однако при ультрафильтрации такое влияние существенно ввиду более высокой проницаемости (примерно на порядок). [c.228]

    Сравнение результатов обратноосмотической и ультрафильтрационной очистки вод показало, что в ряде случаев более эффективно использовать для обработки отходящих вод метод ультрафильтрации, поскольку он обеспечивает необходимую степень очистки и достаточно высокую проницаемость при значительно меньших рабочих давлениях, чем требуется в обратном осмосе. [c.25]

    Одной из важных задач при осуществлении процесса обратного осмоса и ультрафильтрации является выбор мембран, которые должны обладать высокой проницаемостью и селективностью, устойчивостью к действию разделяемых растворов, достаточной механической прочностью, неизменностью характеристик в процессе эксплуатации и хранения, низкой стоимостью. Наиболее пригодны мембраны ацетатцеллюлозного типа, обработанные для водопроницаемости перхлоратом магния. Эти мембраны с порами 0,3—0,5 нм характеризуются большой скоростью пропускания воды, хорошо отделяют соли и другие вещества, имеют высокую степень набухания. [c.151]

    В то время как микрофильтрация, ультрафильтрация и обратный осмос — более или менее сходные процессы, газоразделение, первапорация и диализ достаточно сильно отличаются друг от друга. Основное общее свойство последних трех процессов — использование в них непористых мембран. Заметим, что термин непористые не несет информации о проницаемости. В гл. II было показано, что проницаемость газа через высокоэластический или стеклообразный материал может различаться более чем на пять порядков, хотя оба материала относятся к непористым. Такая большая разница связана с особенностями сегментальной подвижности, которая в стеклообразном состоянии чрезвычайно затруднена. Присутствие кристаллитов может дополнительно снижать подвижность сегментов. Присутствие низкомолекулярных пенетрантов, как правило, увеличивает сегментальную подвижность и подвижность цепей. С увеличением концентрации пенетрантов (газа или жидкости) внутри полимерной мембраны растет подвижность цепей и, как следствие, увеличивается проницаемость (или коэффициент диффузии). Концентрация пенетранта внутри полимерной мембраны определяется по большей части сродством между пенетрантом и полимером. [c.308]

    Применение. Ацетатные нити используют прн изготовлении бельевого трикотажа, тканей для подкладки и штор, изделий детского ассортимента, косынок и др., триаце-татные-при изготовлении тканей для платьев, галстуков, купальных костюмов, термообработанные триацетатные-в пронз-ве плиссированных н тисненых изделий. Из текстури-рованных нитей изготовляют трикотажные изделия. Жгутовое А. в. применяют в пронз-ве сигаретных фильтров, задерживающих 30-50% никотина, до 80% фенола н пирокатехина, 30-40% 3,4-бензпирена (на изготовление жгута расходуется ок. 20% мирового выпуска ацетатов целлюлозы). Полое волокно с селективно проницаемыми стенками используют в спец. аппаратах для мембранного разделения р-ров и коллоидных систем методами обратного осмоса, ультрафильтрации, диализа. Мировое произ-во А. в. 609 тыс. т/год (1983), из них текстильного назначения 275 тыс. т/год, остальное-жгутовое А. а [c.226]

    Обратным осмосом и ультрафильтрацией, как отмечалось выше (стр. 180), можно разделять не только растворы электролитов, но также и смеси органических веш,еств. Примеры подобного разделения приведены на стр. 279— 284. Разделение растворов органических веществ обратным осмосом, влияние на продесс внешних факторов [(рис. IV-7), (IV-11) —(IV-13) и др.] могут быть объяснены с позиций капиллярнофильтрационной модели механизма селективной проницаемости. [c.217]

    Однако обратный осмос и ультрафильтрация отличаются от фильтрования с образованием осадка или закупориванием пор перегородки и получением чистого фильтрата. При обратном осмосе и ультрафильтрации осуществляется разделение раствора на растворитель и раствор с повышенной концентрацией растворенного вещества. При этом накопление растворенного вещества у поверхности мембраны недопустимо, так как оно приводит к резкому снижению проницаемости и селективности действия мембраны (концентрационцая поляризация). Для устранения этого необходимо постоянно обновлять слой жидкости у поверхности мембраны. Таким образом обратный осмос и ультрафильтрация в некотором смысле аналогичны фильтрованию с непрерывным удалением слоя осадка с поверхности перегородки и получением чистого фильтрата и сгущенной суспензии. Однако следует отметить, что при ультрафильтрации может образоваться гелевидный слой на поверхности мембраны, снижающий производительность установки. [c.83]

    Если прекратить подачу частиц в фильтруемую жидкость, подобная мембрана, являющаяся динамическим образованием, разрушится. Динамическая природа мембраны определяет ее полезные технологические свойства. Состав мембраны непрерывно обновляется, вследствие чего она сохраняет свои полезные свойства в экстремальных условиях. Эксплуатация установок обратного осмоса на основе полимерных мембран требует дорогостоящей предварительной очистки, так как на поверхности мембран формируется осадок, снижающий и селективность, и проницаемость. Динамические мембраны позволяют отказаться от предварительной очистки. Наконец, опыт эксплуатации динамических мембран (например, на стоках предприятий целлюлозно-бумажной промышленности) показал, что можно отказаться от ввода частиц мембранообразующего компонента. Динамическая мембрана формируется из содержащихся в стоках коллоидных или полимерных частиц и при этом обеспечивает необходимую степень опреснения. На основе динамических мембран одновременно решаются две задачи —достигается очистка от дисперсных (или полимерных) частиц и опреснение, одновременно протекают два процесса — ультрафильтрация и обратный осмос. [c.386]

    ГИПЕР- И УЛЬТРАФИЛЬТРАЦИОННЫЕ МЕМБРАНЫ, применяют для разделения р-ров методом обратного осмоса или ультрафильтрации. Наиб, распространены полимерные мембраны в виде пленок, полых нитей и тонких покрытий, нанесенных на подложки, имеющие форму листов или полых цилиндров. Гиперфильтрац. пленочные мембраны имеют асимметричную структуру, причем плотный (активный) слой, занимающий 0,1—0,3% ее толщины, обращен к разделяемой системе и обеспечивает задерживание растворенных в-в (напр., Nad) проницаемость 0,05—0,1 м / (м -сут-МПа) при селективности до 99%. Плотность упаковки в разделит, аппарате до 1000 м /м . Полые нити имеют внеш. диаметр 40—200 мкм, толщину стенки ок. 25% от него проницаемость 0,02—0,06 м /(м <суТ МПа) [c.135]

    Из практики эксплуатации мембранных аппаратов следует, что обратный осмос может быть эффективно применен для обес-соливания электролитов концентрацией от 5 до 207о для растворов органических веществ этот диапазон значительно шире. При ультрафильтрации высокомолекулярных соединений верхний предел концентрации растворенного вещества определяется условиями образования гелеобразного осадка на поверхности мембраны или концентрацией, при которой проницаемость становится слишком низкой из-за чрезмерного возрастания вязкости концентрируемого раствора. [c.435]

    Механизм проницаемости при обратном осмосе значительно сложнее, чем при ультрафильтрации. В порах лиофильной мембраны находится связанная вода (при фильтрации водных растворов), которая уменьшает размеры пор и препятствует прохождению сильно гидратированных ионов. В то же время лио-фильность мембраны способствует пр-охождению молекул воды. [c.287]

    Результаты исследования динамики уменьщения диаметра пор в процессе образования напыленного слоя показали, что на испытанных подложках продолжительность напыления при получении мембран для микрофильтрации, ультрафильтрации и обратного осмоса составляет соответственно менее 30 мин, 30- 90 мин, более 90 мин. Продолжительность экспозиции можно значительно снизить, если использовать подложку с порами меньшего диаметра [30]. Например [31], получены мембраны для обратного осмоса с ф = 92—95% (по 3,5%-ному водному раствору Na l) и с высокой проницаемостью при продолжительности полимеризации 2—3 мин на подложке, которой служила нитрат-ацетатцеллюлозная мембрана (Millipo-ге) с >dn = 0,025 мкм (рис. 1-6). [c.26]

    Установлено, что полимерные пленки, выпускаемые промышленностью для ультрафильтрации, ионного обмена [158, 169, 170], а также мембраны из коллодия, желатины, целлюлозы и других материалов [171, 1721 не пригодны для обратного осмоса. Полупроницаемые мембраны, полученные Рейде и Спенсером 11731, имеют хорошую селективность, но малую проницаемость (0,4 л/м ч при давлении 40 ат). Мембраны, приготовляемые по специальной прописи из смеси ацетатцеллюлозы, ацетона, воды, перхлората магния и соляной кислоты (соответственно 22,2 66,7 10,0 1,1 и 0,1 весовых процента), позволяют опреснять воду с 5,25 до 0,05% Na l и имеют проницаемость 8,5—18,7 л м ч при рабочем давлении 100—140 ат [158, 1741, срок их службы не менее 6 месяцев [1751. Электронно-микроскопические исследования этих мембран [176—1781 показали, что их активная часть — плотный поверхностный слой толщиной 0,25 мк с очень мелкими порами, которые не представилось возможности обнаружить. Он соединен с губчатой крупнопористой структурой (поры 0,1 мк) толщиной 250 мк, обеспечивающей механическую прочность мембраны и являющейся подложкой селективного поверхностного слоя. Изыскания способов приготовления мембран продолжаются [159, 160, 179—191], так как, по предварительным расчетам 11921, обратный осмос может стать конкурентноспособным с другими способами опреснения воды при повышении проницаемости мембран до 5 м 1м в сутки. [c.415]

    Выше уже отмечалось, что концентрационная поляризация приводит к загрязнению мембран. Но этим далеко не исчерпывается ее отрицательная роль в мембранных процессах. Именно она определяет сопротивление массообмену со стороны разделяемого раствора. Из-за повышения концентрации у поверхности снижаются селективность и удельная производительность мембран. Причем поскольку отношение концентраций растворенных веществ у поверхности мембраны и в объеме разделяемого раствора экспоненциально возрастает с увеличением удельной производительности, то концентрационная поляризация может явиться фактором, лимитирующим проницаемость мембран в процессах ультрафильтрации, нанофильтрации и обратного осмоса. И усилия, направленные на создание новых высокопроизводительных мембран, могут оказаться напрасными, если одновременно не развивать способы ее эффективного снижения. [c.344]

    Другим важным классом мембранных полимеров являются полиамиды. Для этих полимеров характерно наличие амидной группы (— O--NH—). Хотя алифатические полиамиды охватывают очень широкий класс полимеров, ароматические полиамиды имеют преимущества в качестве мембранных материалов из-за высокой механической, химической, термической и гидролитической устойчивости, а также их свойств по проницаемости и селективности, особенно в процессах обратного осмоса. Однако алифатические полиамиды также проявляют хорошую химическую стабильность и могут быть использованы для микрофильтрации и ультрафильтрации. [c.73]


Смотреть страницы где упоминается термин Проницаемость при обратном осмосе и ультрафильтрации: [c.8]    [c.344]    [c.135]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Осмос

Осмос обратный

Ультрафильтрация



© 2025 chem21.info Реклама на сайте