Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость электрического поля

    Опасность статического электричества при электризации жидких углеводородов можно оценить, зная величину электрического заряда. При увеличении плотности электрического заряда напряженность поля может достигнуть такой величины, при которой произойдет электрический пробой. Величина электрического заряда, соответствующая пробою диэлектрика (нефтепродукта), будет предельной, больше которой не может быть плотность электрического заряда в трубопроводе. Предельная величина электрического заряда в трубопроводе прямо пропорциональна относительной диэлектрической проницаемости жидкости, пробивной напряженности электрического поля и обратно пропорциональна диаметру трубопровода. Увеличение диаметра трубы приводит к уменьшению предельной величины заряда статического электричества. При увеличении времени выдержки жидких углеводородов под напряжением предельная величина заряда уменьшается. С увеличением площади поверхности электродов предельная величина заряда жидкого диэлектрика снижается при постоянном напряжении. Предельная величина заряда очищенных диэлектриков сильно зависит от давления. При возрастании давления предельная величина заряда увеличивается. [c.151]


    Основываясь на современных исследованиях Н-связи, можно сделать предположение, что процесс поляризации существенно зависит от перемещения и положения протона Н-мостика в электрическом поле. Так, в работах [206, 660] при рассмотрении влияния среды на структурную форму комплекса с водородной связью (КВС) отмечается зависимость этой формы от диэлектрической проницаемости среды. При исследовании водородной связи О—Н---М обнаружено, что с повыщением диэлектрической проницаемости раствора происходит переход КВС из молекулярной формы в ионную с последующей диссоциацией комплекса при более высоких значениях е раствора [660, 661]. Существенно, что перенос протона вдоль Н-связи в КВС, как установлено в работе [662], вызывается реорганизацией среды. Хотя влияние среды на связь О—Н---0 мало изучено, высокая подвижность протонов в структуре льда все же д ет основание предполагать, что в образуемых при определенных величинах сорбции КВС возможна миграция протона Н-связи. [c.246]

    Сплавлением ТЮ2 с ВаСОз получают титанат бария ВаТЮз. Эта соль имеет очень высокую диэлектрическую проницаемость и, кроме того, обладает способностью деформироваться под действием электрического поля. Кристаллы титаната бария применяются в электрических конденсаторах высокой емкости и малых размеров, в ультразвуковой аппаратуре, в звукоснимателях, в гидроакустических устройствах. [c.650]

    Внешнее электрическое поле широко используется в процессах обезвоживания и обессоливания нефтей для интенсификации коалесценции отдельных капель. Рассмотрим на примере поведения пары капель механизм их взаимодействия. Будем считать, что капли не деформируются, что эквивалентно замене их двумя жесткими сферами. За счет растворенных минеральных солей капли можно считать проводниками в поле они поляризуются и начинают взаимодействовать друг с другом (рис. 1.4). Сила их взаимного притяжения пропорциональна диэлектрической проницаемости нефти г , квадрату напряженности электрического поля Е и существенно зависит от расстояния между каплями и их радиусов и Общее выражение для силы взаимного притяжения двух незаряженных частиц, действующей вдоль линии, соединяющей их центры, можно записать в виде [c.19]


    Диэлектрическая проницаемость, электрическое смещение напряженность поля и потенциал [c.314]

    В работе [84] рассмотрено влияние количества поглощенных торфом катионов (О) на его диэлектрическую проницаемость. Обнаружено, что величина е увлажненного торфа (И = 20%) при первоначальных добавках А1 и Ма практически не меняется, а при поглощении ионов Са уменьшается. Такое уменьшение, по-видимому, связано с понижением подвижности сорбированных молекул из-за структурных изменений сорбента. Полученные при сравнительно невысоких частотах (600 кГц) результаты дают основание считать, что миграция ионов в электрическом поле не существенна при количестве поглощенных торфом катионов в пределах 0,2 мг/экв на 1 г сухого вещества. В дальнейшем, с увеличением О, наблюдается волнообразное изменение е, что является результатом противодействия двух факторов роста подвижности ионов и их роли как пептизаторов или коагуляторов. Важным вопросом исследования диэлектрических свойств системы сорбент — сорбированная вода является, как отмечалось выше, установление связи между экспериментально определяемыми макроскопическими характеристиками е, г" и молекулярными параметрами сорбента и сорбата. Основой для установления этой связи может служить теория Онзагера — Кирквуда — Фрелиха (ОКФ), в соответствии с которой смесь сорбент — сорбат можно представить как систему различных ячеек сорбента и сорбата. Для такой системы, основываясь на общих теоремах Фрелиха [639], получено соотноше- [c.249]

    Рассмотрим статистическое распределение ионов в растворе с диэлектрической проницаемостью D вокруг какого-либо одного иона, который избран в качестве центрального. Пусть это будет катион с зарядом е. Вокруг этого иона имеется электрическое поле с шаровой симметрией. Потенциал поля в каждой точке есть функция расстояния г точки от центрального иона. [c.404]

    При шт>1, как видно из (9.12), е (со)-> 5. Естественно предположить, что значение е обеспечивается более быстрыми (колебательными и электронными) модами при полностью замороженной ориентационной. Это означает, что при достаточно больщих частотах со электрические диполи отдельных молекул воды не успевают отслеживать это поле, что и приводит к резкому падению диэлектрической проницаемости до значения еоо 5. [c.155]

    ПОВЕДЕНИЕ НЕФТЯНЫХ ЭМУЛЬСИЙ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ Коалесценцию капель в электрическом поле выской напряженности используют, как правило, для разрушения эмульсий типа В/Н, полярная жидкость которых, имеющая №льшую диэлектрическую проницаемость и относительно высокую электропроводность (вода), диспергирована в неполярной жидкости с небольшой диэлектрической проницаемостью и сравнительно низкой электропроводностью (нефть, нефтепродукты). Так, диэлектрическая проницаемость воды, молекулы которой характеризуются большим электрическим дипольным моментом, составляет 81, в то вревкш как диэлектрическая проницаемость нефти - около 2. Усредненная диэлектрическая проницаемость водонефтяной эмульсии зависит от содержания воды в ней и с ростом обводненности увеличивается [41, 42]. Электропроводность чистой воды равна 10" - 10" Ом" -см", а соленой - еще больше. Электропроводность безводной нефти составляет всего 10" - 10" Ом" см" . При увеличении содержания воды проводимость эмульсии значительно повышается. [c.47]

    В работе [39] описывается электрогидродинамический (ЭГД) сепаратор, основанный на воздействии электрического поля на включения (пузырьки) в жидкости (в потоке). Основными факторами, влияющими на процесс разделения фаз, являются неоднородность поля, разность диэлектрических проницаемостей среды носителя ех и включений 2 и наличие направленного потока среды. ЭГД-сепаратор позволяет отделить все примеси, для которых и Е1>Е2- Рекомендуемые [c.139]

    Другой метод электрообезвоживания масел основан на использовании неоднородного электрического поля, в котором капли воды перемещаются в нанравлении градиента напряженности поля [65]. Перемещение капель происходит вследствие неодинаковой диэлектрической проницаемости воды и масла и, следовательно, разной их поляризуемости. Силы, действующие на капли водьг можно определить по формуле (7.26). Этот метод, не нашедший еще широкого применения, способен обеспечить гораздо более глубокое обезвоживание нефтепродуктов, чем методы, основанные на слиянии поляризованных капель, когда при достижении достаточно низких концентраций воды в масле (менее 0,1%) расстояния между каплями становятся столь значительными, что их укрупнение затрудняется, [c.176]

    Диэлектрическая проницаемость растворителя не является единственным фактором, определяющим диссоциацию электролита и электрическую проводимость раствора. Существенную роль при этом играет вязкость растворителя, влияние которой на скорость движения иона в электрическом поле можно оце- [c.463]

    Для многих целей существенно изучение различных физических свойств газовых эмульсий электрических (электропроводности, диэлектрической проницаемости, электрической прочности), магнитных, тепловых (теплоемкости, тепло- и температуропроводности), оптических (рассеяния и поглощения света) и других. Детально обсудить эти свойства в данной книге невозможно, и мы ограничимся рассмотрением лишь наиболее важных для газовых эмульсий электрических свойств. Отметим, однако, что дифференциальные уравнения, описывающие электрические, магнитные, тепловые поля и установившиеся потоки электрического тока, электрической и магнитной индукции, теплоты совпадают по форме [18, 19, 230—232], вследствие чего для гетерогенных систем Оделевский предложил [230] ввести термин обобщенная проводимость , под которой понимается их электропроводность, диэлектрическая и магнитная проницаемости, теплопроводность. Это позволяет описывать некоторые свойства гетерогенных систем, в том числе газовых эмульсий, однотипными зависимостями. [c.111]


    Разрушение эмульсии электрическим полем представляет собой весьма сложный процесс и зависит от многих факторов. Для выяснения его сущности целесообразно рассмотреть поведение капелек воды во внешнем электрическом поле и их взаимодействие под влиянием последнего. Это взаимодействие зависит от диэлектрической проницаемости и электропроводности воды и нефти, от поверхностного натяжения на границе фаз, вязкости нефти, характера и величины электрического поля и т. д. [c.47]

    Диспергированные в нефти глобулы воды, диэлектрическая проницаемость которой в 40 раз больше, чем нефти (около 80), стремятся расположиться вдоль силовых линий поля, образуя цепочки из капель воды. При этом несколько изменяется направление электрических силовых линий, вследствие чего электрическое поле становится неоднородным. [c.47]

    В соответствии с уравнениями электромагнитного поля электрическая проводимость среды х аналогична ее диэлектрической проницаемости 8 [28]. Поэтому соотношения, полученные для расчета ДП дисперсий, можно применить и для расчета их электропроводности путем соответственной замены Ед, е . и 8 на Хд, и х . Результирующие уравнения можно упростить для случая водонефтяных эмульсий, для которых Хй>Хд. Так, аналогами уравнений (1.9) и (1.11) для ДП эмульсии будут следующие уравнения для ее электропроводности [c.17]

    Назначение жидкого диэлектрика — обеспечивать электрическую прочность, охлаждать трансформатор и препятствовать проникновению в твердую изоляцию влаги и воздуха. Поэтому масло должно обладать высокой электрической прочностью при длительном воздействии электрического поля относительно невысокой рабочей напряженности, выдерживать импульсные коммутационные перенапряжения и грозовые разряды. Высокая электрическая прочность достигается тщательной осушкой и фильтрацией масла на месте потребления. Значение диэлектрической проницаемости 8 товарных нефтяных масел колеблется в относительно узких пределах и поэтому не нормируется. [c.522]

    К конденсаторным маслам предъявляются следующие требования выс кая диэлектрическая проницаемость, низкие tg 6 и проводимость, газостойкость в электрическом поле и высокая химическая стабильность. [c.529]

    Под влиянием однородного поля ( >3 10 В/м) капли прямых эмульсий, т. е. таких, в которых диэлектрическая проницаемость дисперсной фазы бд меньше диэлектрической проницаемости дисперсионной среды 6/, деформируются в эллипсоиды и ориентируются своей большей осью перпендикулярно Е. Деформация капель обусловлена электрической силой, действующей на поверхность раздела фаз, т. е. давлением, и определяется выражением [47]  [c.22]

    В системе сорбент — сорбированная вода реактивное поле по мере увлажнения сорбента растет, что обусловливает увеличение дипольного момента комплекса даже в том случае, когда дополнительно сорбированные молекулы непосредственно не взаимодействуют с комплексом. При этом изменение е может происходить не только за счет роста е , но и за счет увеличения бос. В наибольшей мере это должно проявиться тогда, когда приращения Дея и Деоо в результате увлажнения материала отличаются незначительно. В этом случае увеличение е системы обусловлено протонной поляризацией в большей степени, чем ориентационной. Можно предположить, что при включении слабого электрического поля при измерении диэлектрических характеристик системы сорбент — сорбат происходит ориентация диполей, которая способствует переносу протона вдоль Н-связи. Последнее вызывает переход КВС из молекулярной в ионную форму. Вероятность такого перехода в системе сорбент — сорбат зависит от диэлектрической проницаемости среды, окружающей КВС она резко увеличивается при определенной для данной системы критической величине йо- [c.247]

    Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Ти. с определяется как температура, которой соответствует максимум механических потерь. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет На Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникакзт качественно новые явления (вынужденноэластические деформации и разрушение). Закономерности, аналогичные представленным на рис. II. 11 и II. 12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные [c.97]

    Диэлектрики отличаются очень высоким удельным сопротивлением, поэтому они способны длительное время сохранять электрическое поле. Если диэлектрик (изолятор) оказывается во внешнем электрическом поле с напряженностью Eq, то в результате поляризации в нем возникает собственное электрическое поле напряженностью Е, численное значение которого рассчитывается так Е == Eofe, где е — диэлектрическая проницаемость. Электрическая проводимость изоляторов имеет ионную природу, с повышением температуры она увеличивается. [c.120]

    В растворах, содержащих заряженные частицы, энергия взаимодействия между ионами убывает пропорционально Юг, где О — диэлектрическая проницаемость среды. Энергия взаимодействия между однозарядными ионами в водной среде при л = 5- 10- м (расстояние, равное среднему расстоянию между ионами в 1 М растворе) и 300 К равна 3,46 кДж/моль. Напряженность электрического поля между ионами равна 7,5 10 В/см. Энергия межмолекулярного взаимодействия, обусловленного ван-дер-ваальсовыми силами, на этих расстояниях практически равна нулю. Заряженные частицы взаимодействуют с нейтральными молекулами растворителя. Энергия такого взаимодействия характеризуется энергией сольватации ионов (см. 161). Энергия сольватации ионов соответствует по по- [c.601]

    Ес.чи в чистый растворитель с диэлектрической ироннцаемостью 1], ввести электролит, то часть молекул растворителя будет ориентироваться в электрическом поле, создаваемом зарядами ионов электролита. Диэлектрическая проницаемость растворителя должна при этом уменьшаться, так как некоторые из его молекул окажутся ориентированными вокр>т ионов и сделаются пассивными но отношению к внешнему полю. Поэтому диэлектрическая проницаемость раствора ииже, чем исходного растворителя, причем она достигает наименьшего значения в непосредственной близости от иоиа. В случае ионов разных размеров, но с одинаковым зарядом уменьшение диэлектрической проницаемости тем заметнее, чем меньше радиус иона. В соответствии с этим Уэбб подставляет в формулу Борна для каждого радиуса отвечающее ему значение диэлектрической проницаемости Р ,, K( тi)poe всегда меньше, чем диэлектрическая проницаемость чи т()г(J растворителя. [c.56]

    Для исследования структуры и диэлектрических свойств сорбированной воды применяются различные физические и физико-химические методы, в частности диэлектрический метод. Сущность его заключается в измерении макроскопических характеристик поляризации диэлектрика во внешнем электрическом поле. В постоянном электрическом поле поляризация диэлектрика характеризуется статической диэлектрической проницаемостью Ез, в переменном — комплексной диэле1 трической проницаемостью е = е —ге". Установление связи между экспериментально определяемыми характеристиками е , е, г" и молекулярными параметрами диэлектрика является основной задачей теории диэлектрической поляризации [639, 640]. [c.242]

    В одной из первых теорий электрэпроводности растворов электролитов— Б гидродинамической, или классической, теории — прохождение тока рассматривалось как движение жестких заряженных шаров-ионов под действием градиента электрического потенциала в непрерывной жидкой вязкой среде (растворителе), обладающей определенной диэлектрической проницаемостью. Конечно, ионы перемещаются и в отсутствие электрического поля, но это беспорядочное тепловое движение, результирующая скорость которого равна нулю. Только после наложения внешнего электрического поля возникает упорядоченное движение положительных (по направлению поля) и отрицательных (в противоположном направлении) ионов, лежащее в основе переноса тока. Скорость такого направленного движения ионов определяется электрической силой и силой трения. В начальный момент на ион действует только первая сила, представляющая собой произведение заряда иона qi на градиент потенциала grad ijj  [c.118]

    Если использовать относительную диэлектрическую проницаемость чистой воды, равную примерно 80 прн комнатной температуре, то получится явно завышенное значение /, равное 31-Ю м. В двойном слое, однако, вода благодаря высоким электрическим полям должна находиться в состоянии, близком к диэлектрическому насыщению и фактическая диэлектрическая проницаемость будет по крайней мере на порядок меньше в этом случае толщина двойного слоя будет практически совпадать с размерами ионов (3-10"" м), что отвечает его модели ио Гельмгольцу, Точно так же подстановка в уравнение (12.4) вместо I радиуса иоиов (п-10 ° м), а вместо е значений, лежащих в пределах от 4 до 8, дает значения емкости двойного слоя, совпадающие с экснеримеи-тальными. Однако уравиения (12.3) и (12.4) не согласуются с наблюдаемым на опыте изменением емкости с потенциалом электрода и с концентрацией ионов в растворе. Теория Гельмгольца, таким образом, дает правильные значения емкости и реальные размеры двойного электрического слон и в какой-то мере отражает истинную его структуру, но она не мо><ет истолковать многие опытные закономерности и должна рассматриваться лишь как первое приближение к действительности, нуждающееся в дальнейшем развитии и усовершенствова1шн. [c.263]

    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189]

    Дипольные моменты обычно определяют экспериментально, измеряя диэлектрическую проницаемость е веществ при различных температурах. Если вещество поместить в электрическое поле, создаваемое конденсатором, то емкость последнего возрастает в г раз, т. е. г = с1со (где Со и с — емкость конденсатора в вакууме и в среде вещества). [c.71]

    Д. Свансон [5] приводит данные о зависимости диэлектрической проницаемости растворов масел, смол и асфальтенов от частоты электрического поля и отмечает наличие в растворах асфальтенов и смол (в отличие от масел) аномальной дисперсии. Большой интерес поэтому представляет изучение зависимости между диэлектрической проницаемостью и реологическими и коллоидными свойствами смол и битумов. [c.183]

    Нефть является диэлектриком, проводимость которого в зависимости от индивидуальных свойств и примесей изменяется в пределах Ю"" —10 (Ом-м) [5]. Диэлектрическая проницаемость (ДП) нефти — более стабильная характеристика. Она изменяется в пределах 1,9—2,8. Электрическая проводимость и ДП эмульсий существенно зависят о концентрации дисперсной фазы и являются функциями частоты и напряженности внешнего электрического поля. Эти две основные электрические характеристики эмульсий довольно подробно изучались теоретически и экспериментально. Обзор общих результатов, полученных при их исследовании, можно найти в работе Ханаи [2], а результатов конкретных исследований водонефтяных эмульсий— в работах [21—26]. [c.15]

    В системе Гаусся единицы эаряда, напряженности поля, электрического потенциала, смещения, силы тока, сопротивления, проводимости, емкости и диэлектрической проницаемости совпадают с соответствующими единицами системы GSE, Единицы же количества магнетизма, напряженности магнитного поля, магнитной проницаемости, магнитной индукции, магнитодвижущей силы, магнитного сопротивления, магнитного потока и индуктивности совпадают с соответствующими единицами системы QSM. [c.41]

    Высокочастотное титроваиие — вариант бесконтактного кондуктометрического метода анализа, в котором анализируемый раствор подвергают действию электрического поля высокой частоты (порядка нескольких мегагерц). При повышении частоты внешнего электрического поля электропроводность растворов электролитов увеличивается (эффект Дебая — Фалькенгагена), поскольку уменьшается амплитуда колебания ионов в поле переменного тока, период колебания ионов становится соизмерим с временем релаксации ионной атмосферы (примерно 10 с для разбавленных растворов), тормозящий релаксационный эффект снимается. Поле высокой частоты деформирует молекулу, по-Л5физуя ее (деформационная поляризация) и заставляет полярную молекулу определенным образом перемещаться (ориентационная поляризация). В результате таких поляризационных эф фектов возникают кратковременные токи, изменяющие электропроводность, диэлектрические свойства и магнитную проницаемость растворов. Измеряемая в этих условиях полная электропроводность высокочастотной кондуктометрпческой ячейки X складывается из активной составляющей >.акт — истинной проводимости раствора — п реактивной составляющей Хреакт — мнимой электропроводности, зависящей от частоты и тппа ячейки  [c.111]

    Расчет электрофильтра по скорости осаждения частиц в электрическом поле сложен из-за необходимости учета множества факторов, влияющих на осаждение. Необходимо знать дисперсный состав пыли, диэлектрическую проницаемость ее частиц, свойства газа и пыли и учесть их влияние на режим работы элерстро-фильтра. В связи с этим электрофильтры обычно подбирают, используя практические данные о допускаемой скорости очищаемых газов в электрическом поле электрофильтра (в пределах 0,2—1,5 м/с). Конструкцию электрофильтра выбирают также по данным эксплуатационного опыта она должна обеспечивать необходимую степень улавливания пыли из газового потока и надежность в работе. [c.231]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость электрического поля: [c.154]    [c.88]    [c.88]    [c.335]    [c.43]    [c.55]    [c.231]    [c.248]    [c.261]    [c.191]    [c.51]    [c.530]    [c.164]   
Кинетика реакций в жидкой фазе (1973) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Поле электрическое



© 2025 chem21.info Реклама на сайте