Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вытягивание механизм

    Пластичность металла определяется способностью металла не разрушаясь деформироваться так, что деформации остаются и после окончания действия нагрузки. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штамповке. Смещение заполненных атомами металла плоскостей в кристалле в определенных пределах не приводит к разрушению металлической связи. Механизм образования смещений связан с появлением и движением дислокаций. Хрупкими определенное время считались титан, вольфрам, хром, молибден, тантал, висмут, цирконий. Очищенные от примесей эти металлы — высокопластичные материалы, которые можно ковать, прессовать, прокатывать. В табл. 11.3 приведены значения относительного удлинения некоторых металлов, характеризующего их пластичность. [c.324]


    Этот полимер расплавляют и пропускают через отверстия (фильеры) для вытягивания волокон. Капроновое волокно обладает высокой прочностью. Из капрона изготавливают также пленку, детали механизмов, электроизоляторы. [c.447]

    В электропечах непрерывного действия слив металла производится непрерывно путем вытягивания слитка (миксеры для непрерывной разливки) или вычерпывания металла (печи для плавки цинка), а также отсосом. Для этой цели предусматривается устройство механической загрузки шихты и автоматической откачки металла с помощью специальных черпаков или отсасывающих механизмов. Для открывания и закрывания крышек применяют механизмы с электромеханическим или гидравлическим приводом. [c.121]

    Печи для выплавки слитков стали и титана изготовляются с глухими кристаллизаторами, а печи для выплавки слитков тугоплавких металлов, — с короткими кристаллизаторами и механизмами для вытягивания слитков. [c.203]

    Площадка с отметкой (—2) — (—8) л , которую целесообразно устраивать в случае, когда механизм вытягивания слитка или кристаллизатор располагается ниже отметки 0. В этом случае необходимо предусмотреть достаточные размеры приямка и удобный доступ к нему. [c.203]

    Полученные таким путем волокна собираются в пучок, который отводится вращающимися вальцами со скоростью, несколько превышающей среднюю скорость экструзии коллодиума, через фильеру. Это приводит к выравниванию полипептидных цепей и уменьшению диаметра волокон, который становится значительно меньше диаметра отверстий фильеры. Возможно дальнейшее увеличение степени ориентации путем растягивания волокна между последовательными вальцами. В этом случае действуют уже другие молекулярные механизмы. В двух предыдущих фазах ориентирования молекулы находятся в растворе и степень ориентации зависит от градиента скорости, установившейся в Ходе истечения прядильного раствора. Вытягивание волокон, наоборот, представляет собой деформацию твердой среды [102], и повышение степени продольной ориентации при этом связано с непрерывной фракцией вязкого и пластичного характера и ее способностью к деформации. [c.536]

    Растворение ксаитогената осуществляют путем смешения с растворительной щелочью или водой (аппараты ВА). Механизм смешения в этом случае может по-видимому, рассматриваться в рамках теории Бернхарда [10] как вытягивание смешиваемых компонентов в приблизительно параллельные плоские полосы. Средняя толщина полос характеризует скорость и однородность смешения. Она определяется из выражения. [c.109]

    Вытягивание вискозных нитей в режиме высокоэластической деформации в полной мере соответствует этому механизму. Происходит обратимая деформация структур сферолитного уровня с сохранением фибриллярных структур без существенных изменений, Это подтверждается и экспериментально. Так, например, в работе Германса [166] установлено, что при вытягивании нитей от 10 до 120% их плотность остается в пределах от 1520 до 1523 кг/м . Столь незначительное увеличение плотности свидетельствует об отсутствии существенных структурных перестроек в веществе. Сорбция водяных паров, зависящая от поверхности фибрилл и, следовательно, от их размеров, также практически не зависит от вытяжки [85], что свидетельствует о сохранении структуры фибрилл при деформации. Сохранение исходных фибриллярных структурных элементов при вытягивании подтверждается также рентгенографическими данными [87] и экспериментально определенными [86] теплотами растворения вытянутых и невытянутых нитей. [c.233]


    Начало активного использования плазменного нагрева относится к шестидесятым годам прошлого века, когда были созданы эффективные способы стабилизации плазмы. Однако этот способ нагрева, несмотря на его преимушества, не получил должного развития. Основные попытки его использования связаны с методом Чохральского, при этом применялись дуговые плазмотроны постоянного тока. Плазма, возникавшая в разрядной камере в виде узкой струи, направлялась на поверхность шихты, расплавляя ее. В результате получалась система, подобная гарниссажу. Три плазмотрона располагались под углом 120 ° друг к другу. В центре устанавливался механизм вытягивания монокристалла. Оказалось, что способ создания плазмы с помощью постоянного тока имеет тот недостаток, что в расплав попадают частицы электрода. Эта проблема полностью решается при использовании высокочастотного плазмотрона (рис. 98) [107]. [c.135]

    Характерной особенностью кристаллических полимеров является их способность к вытягиванию на сотни процентов при температурах, лежащих намного ниже температуры их плавления. Механизм вытяжки кристаллических полимеров рассмотрен в ряде работ [1, 2]. [c.103]

    Одновременно в процессе деформации в образцах возникают дырки эллипсоидальной формы, через которые видны различные надмолекулярные образования, расположенные в нижнем слое пленки (рис. 1, д). Большой диаметр эллипсоидальных дырок (иногда достигающий значений более 200 ) всегда совпадает с направлением растяжения. Механизм образования дырок, по-видимому, следующий в результате удлинения пленки, т. е. вытягивания сферолитов, сечение пленки уменьшается. В тех местах, которые подвергаются большей деформации или где структура менее компактна, сечение вытянутой части сферолитов сильно уменьшается, в результате чего образуется трещина, которая при дальнейшем растяжении принимает форму дырки. [c.404]

    Из приведенных в табл. 4 результатов видно, что наблюдается очень сильное увеличение скорости кристаллизации (от 7 до 9 порядков величины) с увеличением степени вытягивания при постоянной температуре. Частично это может объясняться изменением механизма кристаллизации при деформации, однако в основном это объясняется значительным увеличением переохлаждения. [c.86]

    Механизм деформации кристаллических полимеров имеет прямое отношение к технологии получения синтетических волокон, в частности полиамидных (найлон, капрон, анид и др.), процессы вытягивания которых осуществляются выше температуры стеклования полимеров. [c.385]

    Сушка П. в. может производиться в аппаратах различного типа наибольшее распространение получили сушилки с перфорированными барабанами. При сушке П. в. необходимо обеспечить возможность свободной усадки волокна, к-рая происходит при любых темп-рах и определяется механизмом капиллярной контракции (усадки), т. к. мокрое волокно является высокопористым материалом. Пористость волокна, в свою очередь, определяется условиями его формования, вытягивания и промывки. Для сохранения заданной надмолекулярной полимерной структуры волокна нежелателен нагрев его в сушилке, особенно в последних зонах, выше темп-ры стеклования (80—90 °С). Во время сушки каркасная структура полимера контрактирует и содержание полимера увеличивается до 85—99% (по объему). Содержание влаги в волокне перед сушкой составляет 150% от массы полимера после сушки — 0,5—2%. [c.351]

    Новые комплексные катализаторы, состоящие из металлорга-нических соединений [например, А1(С2Нб)з] и хлоридов металлов переменной степени окисления (например, Т1С14), позволили получить стереорегулярные полимеры со строго линейной структурой и симметричной пространственной ориентацией. Подобные полимеры отличаются повышенной прочностью и плотностью и обладают более высокой температурой плавления. Такие макромолекулы легко ориентируются при вытягивании, при этом прочность полимеров в направлении вытяжки значительно увеличивается. Стереорегулярные полимеры получаются обычно по анионному механизму, и процесс осуществляется при гомогенном и гетерогенном катализе. [c.194]

    Из теории Чевычелова следует, что основным механизмом, определяющим упругость образца при больших относительных удлинениях, является вытягивание участков цепи из толщи кристалла в аморфную область, а не энтропийная упругость. К недостаткам теории Чевычелова следует отнести то, что она не дает наблюдаемой на опыте локализации разрыва. Реальные полимеры при разрушении распадаются на две или более частей. Согласно же этой теории происходит разрыхление образца по всему объему. Кроме того, Чевычелов рассматривает только разрыв химических связей, но не учитывает обратный процесс — рекомбинацию концов цепей. Однако при небольших напряжениях рекомбинация разорванных связей может играть существенную роль и давать так называемое безопасное напряжение, существование которого отвергается теорией Чевычелова. Возможно, что именно неучетом рекомбинации связей объясняется столь большое расхождение вычисленной и измеренной концентрации концов цепей. [c.209]


    Чохральским (рис. 84). Вещество в тигле ] из кварца или специального графита расплавляют с помощью индукционного нагревателя 2. В расплав, нагретый немного выше температуры плавления вещества, загружают затравку в виде небольшого кристалла того же вещества 3. Для лучшего перемешивания расплава затравку вместе со штоком 4, к которому она прикреплена, приводят во вращение со скоростью от 2 до 100 об мин. Когда затравка соприкасается с расплавом и немного оплавится, включают подъемный механизм. При вытягивании затравки на ней нарастает кристалл диаметром, зависящим от степени перегрева расплава, скорости подъема затравки и условий охлаждения твердой фазы.Скорость вытягивания 0,5— 10 мм мин. Меняя параметры, можно менять сечение растущего кристалла. Вытягивание ведут в вакууме или в атмосфере инертного газа. Так как большинство примесей в германии и кремнии имеет К С 1, то при их вытягивании из расплава в верхней части выращенного кристалла будет содержаться меньше примесей, так как они по преимуществу накапливаются в остающейся части расплава и попадают в хвост кристалла. Загрязненную часть кристалла удаляют и всю операцию повторяют несколько раз. Так можно добиться уменьшения концентрации примесей до 10 атомов на 1 см . Для германия это можно считать вполне удовлетворительной степенью очистки. [c.265]

    Рассмотрим еще метод вытягивания монокристаллов из расплава, предложенный в 1918 г. Чохральским (рис. 84). Вещество в тигле 4 из кварца или специального графита расплавляют с помощью индукционного нагревателя 3. В расплав, нагретый немного выше температуры плавления вещества, загружают затравку в виде небольшого кристалла того же вещества 2. Для лучшего перемешивания расплава затравку вместе со штоком 1, к которому она прикреплена, приводят во вращение со скоростью от 2 до 100 об/мин. Когда затравка соприкасается с расплавом и немного оплавится, включают подъемный механизм. При вытягивании затравки на ней нарастает кристалл диаметром, зависящим от степени перегрева расплава, скорости подъема затравки и условий охлаждения твердой фазы. [c.328]

    Доля мощности нечи, отводимая через шток механизма вытягивания слитка, %. . 1 1-2 1 1,5 1-2 1-2 [c.247]

    При получении техн. нитей используется также способ совмещенного формования и вытягивания. Приемное устройство в этом случае включает кроме намоточного механизма еще 3-4 пары вытяжных дисков, за счет разницы скоростей вращення к-рых происходит вытягивание нити в [c.606]

    Совр. технология произ-ва текстильных текстурир. нитей включает две осн. стадии высокоскоростное формование (до 6000 м/мин) и совмещенный процесс ориентац. вытягивания с текстурировапием. Последний проводят на машинах, снабженных механизмом ложной крутки фрикционного типа, со скоростью 600-1000 м/мин масса паковки [c.49]

    При вытягивании кристаллов методом Чохральского форма наружной поверхности жидкого столбика оказывает непосредственное влияние на геометрию растущего кристалла. Поэтому имеющиеся работы по исследованию поверхностных явлений касаются главным образом определения формы наружной поверхности столба расплава и нахохадения связи между высотой столба и диаметром вытягиваемого кристалла. Работа [29] является первой попыткой рассмотреть влияние механизма смачивания на форму кристалла. Автор считает, что при отсутствии потерь тепла с поверхности кристалла (идеальная экранировка) диаметр кристалла полностью опередляется механизмом смачивания. В работе приводится приближенное решение уравнения наружной поверхности жидкости столбика в случае вытягивания из расплава кристалла цилиндрической формы. [c.95]

    Известны и другие конструкции вытяжной части штапельного агрегата. В одном из них (рис. 7.31) нити с прядильных шпуль вытягиваются на отдельных вытяжных механизмах, состоящих из пары вытяжных роликов и располон енной между ними горячей плоской металлической пластины. После вытягивания нити собираются вместе и по направляющим роликам проводятся в гофрировотаую машину. Частая смена шдуль, индивидуальная заправка каждого вытяжного места и подмоты волоконец на вытяжных роликах повышают трудозатраты, поэтому такие машины не нашли широкого применения. [c.208]

    Их появление обусловлено слипанием отдельных элементарных нитей вследствие миграхрги точки вытягивания вплоть до вьюркового механизма. Эти нити полностью пригодны для изготовления вязаных изделий, но не пригодны для ткачества. В вязаных изделиях уплотненные места не видны, но заметны на тканях. Принципиально и в таком способе могут быть применены исходные нити с любой степенью предориентации, но, однако, применение нитей с низкой степенью предориентации осложнено  [c.221]

    Машины фирм Бармаг (ФРГ), АРЦТ (Франция), Тошиба (Япония) скомпонованы как одноэтажные. Характерной для машин этого типа является машина фирмы Тошиба , схема компоновки которой приведена на рис. 7.53 [441. На этой машине шпули 1 с невытянутым волокном устанавливают по обе стороны машины вытягивания и текстурирования. Нити пропускаются над проходами в машине и вытягиваются в зоне 2. Ниже установлен первый нагреватель 3 зоны текстурирования, механизм текстурирования 4, второй нагреватель 5, обеспечивающий термофиксацию нити, Под полом проходов нити поступают на намоточные головки 6. Перед намоткой наносят замасливатель (если далее нити окрашивают, то в нанесении замаслива-геля нет надобности). Машина снабжена передвижными лестницами 7. Б отличие от всех других эта машина оборудована воздушным сопловым устройством ложного кручения (так называемого стреч-процесса ). [c.222]

    Рассмотрим модель морфогенеза на основе зародышевых эпителиев. Деформации эпителиальных пластов складки, вытягивания, изгибы и т. д.— служат формообразующими механизмами. Процесс состоит из ряда стадий. Прежде всего осушествля-ется разметка — в эпителии выделяется некая активная область. В этой области пласт клеток утолщен — клетки удлинены, поляризованы в нормальном к пласту направлении. Образование поляризованных клеточных доменов служит началом морфогенеза животных. [c.576]

    В работе [2] при определении прочности элементарных стеклянных волокон в момент их вытягивания было показано, что прочность стеклянного волокна, полученного обычным промышленным способом в исследованном интервале диаметров (7—50 мк), составляет 300— 320 кГс1мм и мало зависит от диаметра, что коррелируется с данными Томаса [3]. В то же время результаты испытаний тех же самых стеклянных волокон обычным способом (образцы волокон извлекались из пряди и испытывались через несколько дней после их получения) показали, что прочность стеклянного волокна с увеличением его диаметра снижается. Можно предположить, что в этом случае мы испытываем стеклянные волокна с развившимися поверхностными дефектами механизм их разрушения соответствует представлениям Гриффита [4], А. П. Александрова и С. Н. Журкова [5]. [c.317]

    Установка для вытягивания труб состоит из ванной печи, к студочной части 1 которой пристроена рабочая камера 4 (муфель), и машины, представляющей собой механизм вращения мундштука 3 и тянульное устройство 5. [c.46]

    М у нд ш т у к кр ен и тс л на НОЛО1М металлическом валу механизма для его вращения. Струя стекломассы иопадает на верхний конец мундштука, который непрерывно вращается вокруг своей оси. Мундштук расположен наклонно, благодаря чему обеспечивается стекание стекламассы с него. Угол наклона мундштука оп-р едел я етс я к о л и ч еств о м стекломассы, подаваемой на него, температурой стек л ома ос ы, ди а м ет р о м формуемой трубы и скоростью ее вытягивания. [c.47]

    ИсследоЕШния кинетики кристаллизации часто применяются для выяснения механизмов кристаллизации и морфологии полимерных систем. Выполненная ранее работа [1] показывает, что при кристаллизации натурального каучука в процессе растяжения с повышением степени вытягивания наблюдаются некоторые необычные явления. Поскольку эти измерения были проведены только при температуре кристаллизации, детальный анализ процесса невозможен. [c.68]

    Вытяжные механизмы вытягивают свеже-сформованные волокна для улучшения их механич. свойств. Эти механизмы состоят из системы дисков или валов (конических или цилиндрических), вращаемых с разными скоростями. При формовании по мокрому способу на нок-рых тинах П. м. на пути между вращающимися дисками или валами вытягиваемые волокна обрабатываются иластификационной ванной, имеющей температуру ок. 95°С при этом волокна становятся пластичными, и условия вытягивания облегчаются. Сосуды, в к-рых циркулирует пластификацион шя ванна, м. б. индивидуальными для каждого рабочего места или общими для всей П. м. [c.120]

    Механизм диссоциации и перегруппировки может быть выяс-(/) нен с помощью некоторых специальных приемов в эксперимен- тальной работе на масс-спектрометре. Поскольку одним из 9СН0В- рНых критериев является время образования осколочного иона из молекулярного, то сокращение времени вытягивания ионов из камеры ионизации стандартного масс-спектрометра до 10 сек позволяет обнаружить медленные процессы. [c.17]

    Сформованное М. с целью упрочнения подвергают ориентационному вытягиванию (о конструкции вытяжных механизмов см. Прядилъные машины). Напр., полиамидные М. вытягивают в 3,5—5,0 раз, полиэфирные — в 4,5—6,0, полиолефиновые — в 5—7. Вытягивание проводят в нагретой воде, паре, горячем воздухе. Полиамидные и полученные из сополимеров винилидеп-хлорида с винилхлюридом М. сравнительно небольшого диаметра иногда вытягивают при нормальной темп-ре. [c.149]


Смотреть страницы где упоминается термин Вытягивание механизм: [c.126]    [c.192]    [c.241]    [c.120]    [c.88]    [c.46]    [c.330]    [c.46]    [c.228]    [c.232]    [c.86]    [c.379]    [c.282]    [c.353]    [c.244]    [c.201]    [c.59]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.426 ]




ПОИСК







© 2025 chem21.info Реклама на сайте