Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки сетчатки

Рис. 18-56. Рщептивные поля клеток на последовательных уровнях зрительной системы млекопитающего и ответы зтих клеток иа различные световые стимулы. Квадратом представлен небольшой участок зрительного поля. Слева показаны рецептивные поля трех клеток, получающих информацию от данной области зрительного поля фоторецептора, ганглиозной клетки сетчатки и простой клетки из зрительной коры головного мозга. Приводятся ответы клеток каждого типа на шесть различных стимулов. Следует отметить, что сильный ответ фоторецешора сигнализирует лишь о том, что в определенном участке зрительного поля имеется светлое пятно, освещен-иость же соседних точек поля не имеет никакого значения. С другой стороны, сильный ответ кортикальной клегки дает более полную информацию о пространственной структуре стимула (хотя информация о положении стимула в поле зрения передается несколько менее точно). На рнсуике представлен только один тип ганглиозных оеток сетчатки и только одии из многих типов кортикальных нейронов. Рис. 18-56. Рщептивные поля клеток на последовательных уровнях <a href="/info/509289">зрительной системы</a> млекопитающего и ответы зтих клеток иа различные световые стимулы. Квадратом представлен небольшой участок зрительного поля. Слева показаны <a href="/info/265891">рецептивные поля</a> трех клеток, получающих информацию от данной области зрительного поля фоторецептора, <a href="/info/98256">ганглиозной клетки</a> сетчатки и простой клетки из <a href="/info/509763">зрительной коры головного мозга</a>. Приводятся ответы клеток каждого <a href="/info/50308">типа</a> на шесть различных стимулов. Следует отметить, что сильный ответ фоторецешора сигнализирует лишь о том, что в определенном участке зрительного поля имеется светлое пятно, освещен-иость же соседних <a href="/info/3546">точек</a> поля не имеет никакого <a href="/info/679869">значения</a>. С другой стороны, сильный ответ кортикальной клегки дает более полную информацию о <a href="/info/73670">пространственной структуре</a> стимула (хотя информация о положении стимула в поле зрения передается несколько менее точно). На рнсуике представлен только один тип ганглиозных оеток сетчатки и только одии из многих <a href="/info/50308">типов</a> кортикальных нейронов.

    После достаточно долгого пребывания в темноте сетчатка адаптируется к ней и молекулы зрительных пигментов находятся в полностью регенерированной форме (см. ниже), т. е. хромофор 11-г с-ретинальдегид связан с белком опсином в специфической 6-з-цис, 12-5-транс-конформации. Молекулы пигментов в рецепторной мембране ведут себя как самостоятельные функциональные единицы. Попадающий в глаз свет падает на рецепторные клетки сетчатки и поглощается молекулами зрительного пигмента. Затем происходит обесцвечивание пурпурного зрительного пигмента в ходе серии изменений, которую мы все еще не в состоянии описать на молекулярном уровне. Вместе с тем в общих чертах стадии процесса уже выяснены (рис. 9.11). [c.310]

    Большинство перманентных клеток обновляет свои составные части. Пример фоторецепторные клетки сетчатки [8] [c.140]

    Сенсорную область, на которую должен попасть стимул, чтобы повлиять на данный нейрон, называют рецептивным полем этого нейрона (рис. 18-54). Условия эффективности стимуляции каждого отдельного фоторецептора очень просты на данный участок сетчатки должен падать свет с подходящей длиной волны. Но по мере перехода к высшим уровням зрительной системы условия эффективности стимула постепенно усложняются. Примером могут служить ганглиозные клетки сетчатки. Рецептивные поля этих клеток, как правило, шире, чем у отдельных фоторецепторов, и частично перекрывают друг друга. Типичная ганглиозная клетка отвечает на равномерное освещение очень слабо. Более того, небольшое пятно света, занимающее лишь часть рецептивного поля клетки, вызывает противоположные эффекты в зависимости от того, где оно находится-в центре илн ближе к периферии рецептивного поля напрнмер, оно может возбудить ганглиозную клетку, если будет находиться в центре, но окажет тормозное действие, находясь на периферии. Для такой ганглиозной клетки наиболее эффективным стимулом будет яркое круглое пятно, окруженное темным кольцом (рис. 18-55). Другие ганглиозные [c.127]

    В принципе механизм нейронной специфичности мог бы иметь универсальное значение и повсюду в нервной системе определять, какне клетки должны связаться друг с другом. На практике же (хотя для многих частей нервной системы уже получены убедительные данные в пользу нейронной специфичности) очень трудно точно установить, насколько велика роль такой специфичности в организации всей системы. Недавно, однако, был сделан важный шаг на пути к выяснению молекулярного механизма нейронной специфичности. С помощью моноклональных антител на поверхности клеток сетчатки куриного эмбриона был идентифицирован гликопротеин, который, подобно гипотетической метке нейронной специфичности, позволял определить принадлежность клетки к той или иной области сетчатки. Концентрация этого маркера в сетчатке плавно изменяется-на одном ее полюсе его в 35 раз больше, чем на другом, и он присутствует почти на всех клетках сетчатки. Градиент концентрации маркера можно обнаружить уже на четвертый день эмбрионального развития, и он сохраняется в течение всего периода роста сетчатки. Возможно, что это и есть проявление позиционной метки, которую клетки приобретают уже на ранней стадии развития эмбриона и которая служит впоследствии направляющим фактором при образовании нервных связей. [c.148]


    Одна из наиболее важных областей исследования в органической фотохимии связана с химизмом зрительных процессов. Поскольку часть связанных со зрением химических процессов близка к вопросам, обсуждаемым в настоящей главе, кратко опишем здесь зрительный процесс. Глаз — необычайно чувствительный инструмент. Область его действия ограничена диапазоном длин волн от 4000 до 8000 А, но зато степень его чувствительности такова, что адаптировавшийся к полной темноте глаз может четко различать объекты, обладающие ничтожно малой яркостью, соответствующей попаданию на сетчатку всего лишь 10 ООО квант/с, т. е. попаданию всего лишь 1 кванта света в 3 мин на рецепторную клетку сетчатки Сетчатка состоит из светочувствительных клеток двух типов, известных под названием палочек и колбочек. Палочки обладают большей чувствительностью и обусловливают зрение при плохом освещении. Число колбочек значительно меньше числа палочек. Этот тип клеток ответствен за восприятие деталей и цветное зрение при хорошем освещении. Та часть сетчатки, которая соответствует центру поля зрения, состоит только из колбочек. [c.484]

    Организм развивается из одной клетки, но в развившемся организме находятся и действуют клетки совершенно разных назначений — разной специализации. Одни из них выполняют мышечную работу, другие передают нервные импульсы, функции третьих заключаются в выделении желчи (клетки печени), четвертые образуют соляную кислоту желудочного сока, а клетки сетчатки глаза воспринимают световые импульсы. Каждая клетка имеет, кроме общего оборудования (тоже всегда не вполне одинакового), еще специальное, отвечающее ее узкому назначению. Каким путем все это разнообразие возникло из единственной исходной клетки, трудно сказать. Мы не имеем возможности задерживаться на рассмотрении теорий дифференциации, а ограничимся описанием нескольких типов клеток. [c.171]

    К хромопротеидам относится группа сложных белков, хромофорная группа которых представлена ретиналями. Они локализуются в клетках сетчатки глаза и их называют зрительным пурпуром или зрительными пигментами. Функциональной особенностью этих белков является способность к рецепции света [84]. [c.180]

    Фоторецепторные клетки сетчатки (палочки и колбочки) направлены своими светочувствительными частями к сосудистой оболочке, а со стороны стекловидного тела перекрыты телами и отростками нейронов, связывающих их с головным мозгом (рис. 17.36). [c.324]

    Зрительный пигмент родопсин, так же как и бактериородопсин, — практически единственный белок в фоторецепторной мембране зрительной клетки сетчатки глаза (на его долю приходится до 80% всего белка в мембране). Хромофором родопсина также служит ретиналь, находящийся в комплексе с опсином. Фотопревращения родопсина тесно сопряжены с ионными и ферментативными процессами, лежащими в основе зрительной рецепции, а также с возникновением трансмембранной разности потенциалов на фоторецепторной мембране за счет сдвига протона в мембране. [c.388]

    Палочка (см. разд. 16.22) состоит из наружного сегмента, содержащего световоспринимаюший аппарат, внутреннего сегмента, где находится множество митохондрий, ядерной области и (в основании клетки) синаптического тельца, образующего контакты с нервными клетками сетчатки. Как это ни удивительно, но в темноте клетка очень сильно деполяризована эта деполяризация удерживает потенциал-зависимые кальциевые каналы синаптического тельца в открытом состоянии, и переход ионов Са внутрь клетки приводит к непрерывному высвобождению медиатора. Деполяризация обусловлена тем, что в плазматической мембране наружного сегмента открыты натриевые каналы. При воздействии света эти каналы закрываются, так что рецепторный потенциал приобретает форму гиперполяризации, приводящей к уменьшению скорости выделения медиатора (рис. 18-50). Так как медиатор оказывает тормозящее действие на многие постсинаптические нейроны, эти нейроны при освещении растормаживаются и в результате возбуждаются. Скорость высвобождения медиатора фоторецепторами изменяется в соответствии с интенсивностью света чем ярче свет, тем значительнее гиперполяризация и тем силь- [c.123]

    Клетки, расположенные у взрослого в центре хрусталика, образовались еще в эмбриональном периоде 154 Большинство перманентных клеток обновляет свои составные части. Пример фоторецепторные клетки сетчатки 156 [c.497]

    Поглощение света веществом — внутримолекулярный физический процесс. Свет поглощается молекулами (их комплексами, атомами, радикалами, ионами), а не сложными биологическими структурами, такими, например, как ядра, митохондрии, клетки, сетчатка глаза. Исключение составляют лишь полупроводники, у которых в поглощении света участвуют обобществленные энергетические уровни, создающиеся в результате взаимодействия многих центров (атомов, ионов или молекул). Во взаимодействии вещества со светом, связанном с поглощением, проявляются как квантовые (корпускулярные), так и волновые свойства последнего. [c.8]

    Усилительные механизмы в наиболее выраженной и совершенной форме представлены в информационных фотобиологических реакциях, в первую очередь в зрительных. Здесь достаточно попадания в зрительную клетку сетчатки глаза одного или нескольких квантов света, чтобы в нервном волокне возник спайк. Как и в самом совершенном радиоэлектронном устройстве, в этом случае коэффициент усиления по мощности достигает 105—106. [c.374]

    Простое детектирование света еще не есть зрение, фоторецептор является измерителем света , а не фотопластинкой. Зрительная система представляет собой иерархию стадий обработки, на которых простой световой стимулятор дополняется все большим количеством информации. Реакция фоторецептора (палочки или колбочки) прямо пропорциональна количеству падающего света. Но уже в ганглионарных клетках сетчатки едва ли возможно установить пропорциональность между интенсивностью света и ответной реакцией. Эти клетки реагируют преимущественно на световой контраст, а обработка ими сигналов, исходящих от фоторецепторов, называется интегрированием и обусловлена двумя особенностями сетчатки. Во-первых, сетчатка имеет трехслойную структуру (рис. 1.8) она состоит из рецепторных, биполярных и ганглионарных клеток, меладу которыми расположены клетки других типов амакрино- [c.20]


    Фоторецепторы передают свою информацию через синапсы в систему нейронов, находящуюся в среднем слое сетчатки. Этот слой состоит из биполярных, горизонтальных и амакриновых клеток (рис. 18-52). Нейроны всех этих трех классов настолько малы, что могут проводить сигналы путем пассивного распространения потенциалы действия в них не возникают. У горизонтальных и амакриновых клеток (рнс. 18-53) отросткн направлены в стороны, параллельно плоскости сетчатки, тогда как у биполярных клеток они ориентированы перпендикулярно и обеспечивают прямую связь со следующим слоем-с ганглиозными клетками сетчатки. Ганглиозные клетки посылают аксоны к мозгу, кодируя зрительную информацию в форме потенциалов действия. У млекопитающих информация, воспринимаемая глазом, поступает главным образом в первичную зрительную зону коры головного мозга (илн, как говорят ради краткости, в зрительную кору) через синапсы мозговой передаточной станции , называемой латеральным коленчатым ядром (рис. 18-51). В зрительной коре, которая состоит из нескольких слоев нейронов, зрительная информация вновь переходит от слоя к слою в направлении, более или менее перпендикулярном к поверхности коры мозга. Из первичной зрительной зоны нервные волокна передают информацию другам областям коры. (Картина усложняется тем, что информация от правого н от левого глаза поступает в одну и ту же область зрительной коры, но мы отложим рассмотрение этого обстоятельства до конца главы.) [c.126]

    Поведение нейронов высших уровней, служащих детекторами сложных черт видимого мира, определяется нервными связями в зрительном пути. В качестве примера рассмотрим ганглиозную клетку сетчатки, реагирующую на яркое пятно, окруженное темным фоном. От чего зависит эта спещ1фическая чувствительность  [c.128]

    Специальные преобразователи переводят сенсорные стимулы в форму нервных сигналов. Например, в рецепторе растяжения мышцы окончание сенсорного нерва деполяризуется при растяжении и величина деполяризации-рецепторный потенциал-для дальнейшей передачи перекодируется в частоту импульсного разряда. Слуховые волосковые клетки, избирательно реагирующие на звуки определенной частоты, сами не посылают импульсов, а передают сигналы о величине рецетпорного потенциала соседним нейронам через химические синапсы. Таким же образом действуют фоторецепторы глаза. В фоторецепторах свет вызывает конформационное изменение молекул родопсина, и это благодаря участию внутриклеточного второго посредника ведет к закрытию натриевых каналов в плазматической мембране, к ее гиперполяризации и в результате-к уменьшению количества высвобождаемого медиатора. Далее вставочные нейроны передают сигнал ганглиозным клеткам сетчатки, которые пересылают его в мозг в виде потенциалов действия. Проходя череъ нейронную сеть с конвергентными, дивергентными и тормозными латеральными связями, информация подвергается обработке, благодаря которой клетки высших уровней зрительной системы могут выявлять более сложные особенности пространственного распределения световых стимулов. [c.130]

    Ганглиозные клетки сетчатки каждого глаза направляют свои аксоны к противоположной стороне зрителыюй крыши, создавая там упорядоченную проекцию Ш - п. Д - д и т. д.) [c.148]

    У амфибий и рыб клетки сетчатки направляют свои аксоны главным образом к зрительной крыше, в которой создается упорядоченная проекция видимого мира. После перерезки зрительного нерва эти аксоны регенерируют и вновь образуют упорядоченную проекцию. Если повернуть сетчатку относительно оптической оси глаза, регенерирующие аксоны связывают перемещенные нейроны сетчатки с теми же клетками зрительной крыши, которые соответ ствовали этим нейронам при первоначальном полоокении сетчатки,-так, как будто восстановление связей определяется нейронной специфичностью. Можно думать, что нейроны сетчатки несут определенные метки, зависящие от их местополоомхния, и аксоны этих нейронов предпочтительно соединяются с клетками зрительной крыши, несущими соответствующую метку. В то же время этим аксонам свойственны как конкурентные, так и кооперативные взаимодействия, благодаря чему их окончания упорядоченным образом распределяются по всей имеющейся поверхности зрительной крыши. [c.154]

    Способность рецепторных клеток сетчатки глаза реагировать на изменение светового потока лежит в основе зрительного восприятия позвоночных и беспозвоночных животных. Процесс трансформации энергии света в фоторецепторный сигнал у позвоночных происходит в светочувствительных клетках сетчатки — палочках и колбочках. Палочки обеспечивают сумеречное зрение. Наиболее подробно молекулярные и мембранные механизмы зрительной рецепции изучены в палочках позвоночных. Палочка способна генерировать зрительный сигнал в ответ на поглощение одного кванта. На рис. XXIX. 12 приведена схема палочки. [c.410]

    Специфическим признаком ретинолавитаминоза у детей является поражение роговой оболочки глаза, приводящее к ксерофтальмии (сухость роговицы глаз) и в тяжелых случаях заболевания—к кератомаляции (изъязвление роговой оболочки глаза). У взрослых авитаминоз проявляется в потере способности видеть в сумерках, отчего заболевание получило название куриная слепота , или гемералопия. Куриная слепота возникает вследствие недостаточного образования зрительного пурпура — родопсина в клетках сетчатки глаза, называемых палочками. Родопсин—это сложный белок, в состав которого, кроме белка опсина, входит продукт окисления ретинола—11-цис-ретинен (альдегид). При недостатке ретинола наблюдается пониженная сопротивляемость организма инфекционным заболеваниям, повышенная утомляемость и задержка роста. [c.77]

    Химические раздражители также генерируют электрические сигналы, прием световых сигналов клетками сетчатки глаза связан с действием на нейроны продуктов фотохимической реакции, которые возникают после того, как кванты света были поглощены хихмически активным веществом. Нейроны помогают ориентироваться в окружающей среде не только через посредство механических или зрительных устройств. Малейшие колебания электрического поля в водной среде фиксируются нейронами, расположенными в коже рыб, взаимодействие этих колебаний с электрическими импульсами нейронов позволяет выбрать правильное направление движения рыба всем телом чувствует среду. Сигналы нейронов ощупывают окружающее пространство. [c.230]

    Уже давно было установлено, что чувствительные к свету клетки сетчатки глаза (палочки и колбочки) содержат вещество или вещества, изменяющиеся под действием света. Еще в 1877 г. Болл наблюдал обесцвечивание сетчатки лягушки при ее освещении. Сетчатка, вначале ярко-красная, желтеет и в конце концов становится совершенно бесцветной. Красное вещество в палочках животных было названо зрительным пурпуром, или родопсином. В 1933 г. Уолд установил, что родопсин состоит из бесцветного белка опсина и окрашенного вещества, которое позднее было названо ретиналем. Рети-наль образуется из витамина А в результате удаления двух атомов водорода из конечной группы СН2ОН  [c.323]

    Яркий пример конвергенции и суммации — работа так называемых палочек (фоторецепторов) в сетчатке глаза. Некоторые из этих клеток способны реагировать даже на один квант света, но возникаюший в них потенциал недостаточен для возбуждения потенциала действия в любом из нейронов зрительного нерва. Однако от 2—3 до нескольких сотен палочек связаны с одной биполярной нервной клеткой сетчатки, а по нескольку последних — с каждым волокном зрительного нерва. Чтобы вызвать в нем импульс, необходима стимуляция по меньшей мере шести палочек. Повьппенная чувствительность к свету, обусловленная таким совместным действием палочек, служит прекрасным приспособлением для сумеречного зрения, хорошо развитого у животных, ведущих ночной образ жизни, например у сов, барсуков и лисиц. Однако высокая чувствительность этой системы влечет за собой снижение ее разрешающей способности (остроты зрения), в чем нетрудно убедиться, пытаясь читать в сумерках. В глазу человека и многих других видов, активных в светлое время суток, этот дефект палочкового зрения преодолевается благодаря присутствию второго типа фоторецепторов — колбочек, которые, за немногими исключениями, работают без конвергенции и суммации. Проигрывая в чувствительности, они обеспечивают высокую остроту зрения (разд. 17.5.3). [c.319]

    Другие безымпульсные нейроны сами не являются рецепторами, но собирают сигналы от рецепторов и передают их дальше аналоговым образом. Такой нейрон обнаружен, например, у речного рака он собирает сигналы от нескольких механорецепторов, и сдвиг его потенциала пропорционален скорости движепия воды относительно тела, когда вода течет от хвоста к голове. Почему именно в таком направлении Потому,что рак пятится хвостом вперед, и эти безымпульсные нейроны помогают ему измерять скорость его попятного движения. В сетчатке человека и животных безымпульсными являются не только палочки и колбочки, но и многие другие типы клеток, которые получают сигнал от фоторецепторов. Вся обработка сигналов в сетчатке в сложной сети зтих разных типов клеток осуш ествляется без импульсов, аналоговым образом. Генерируют импульсы только выходные клетки сетчатки — ганглиозные клетки, которым нужно передать сигнал от сетчатки в мозг по длинным аксонам, образуюш им зрительный нерв. [c.217]

    Для идентификации некоторых гликопротеинов клеточной поверхности, участвующих в межклеточной адгезии у позвоночных, был использован иммунологический метод, представленный на рис. 14-63. В одном из наиболее изученных примеров были получены фрагменты моновалентного антитела к клеткам сетчатки куриного эмбриона. Затем были отобраны антитела, ингибирующие реагрегацию этих клеток in vitro. Мембранные белки клеток сетчатки были затем фракционированы и испытаны на способность нейтрализовать блокирующую активность антител. Таким путем был идентифицирован крупный (около 1000 аминокислотных остатков) грансмембранный гликопротеин, названный молекулой адгезии нервных клеток (N- AM). N- AM экспрессируется на поверхности нервных и глиальных клеток (разд. 19.1.6), склеивая их при участии [c.520]

    Процесс обновления клеточных компонентов особенно ярко можно проиллюстрировать на примере высокосиециализироваииых нервных клеток, образующих фоторецепторы сетчатки. Нервная часть сетчатки (см. рис. 17-2) состоит из нескольких клеточных слоев, раеноложенных, казалось бы, весьма странным образом нейроны, передающие зрительные сигналы в мозг (ганглиозные клетки сетчатки), лежат ближе всего [c.156]

    Палочка (рис 19-52) состоит из наружного сегмента, содержащего световоспринимающий аппарат, внутреннего сегмента, где находится множество митохондрий, ядерной области и Гв основании клетки) синаптического тельца, образующего контакт с нервными клетками сетчатки (см. рис. 17-6). Как )то ни удивительно, но в темноте клетка очень сильно деполяризована эта деполяризация [c.342]

    В том же году Лайон попыталась на основе своей гипотезы объяснить данные, полученные при изучении заболеваний человека, наследуемых сцепленно с полом при Х-сцепленном глазном альбинизме у гемизиготного мужчины нет пигмента в эпителиальных клетках сетчатки и глазное дно имеет бледную окраску, У гетерозиготных женщин наблюдается неправильная пигментация сетчатки, с пигментированными и не содержащими пигмента пятнами, так что глазное дно имеет не равномерную окраску, а точечную. На рис. 2.73 изображено такое глазное дно. Лайон предсказала также, что должен существовать мозаицизм и по другим Х-сцепленным генам, в частности по вариантам фермента глюкозо-6-фосфат - дегидрогеназы (ОбРВ). [c.104]

    В некоторых клетках (например, в нейронах симпатических ганглиев) подобные гиперполяризующие потенциалы играют роль ТПСП. В других случаях (например, клетки сетчатки) роль этих потенциалов неясна. Синапсы, функция которых связана со снижением ионной проницаемости, обладают рядом особенностей. В этих синапсах гиперполяризация возникает в результате избирательного снижения проницаемости для ионов, поток которых сопровождается деполяризацией мембраны. Снижение проницаемости приводит к увеличению сопротивления мембраны при этом постоянная времени мембраны возрастает, и в результате изменения синаптических потенциалов во времени происходят медленнее. С точки зрения интеграции синаптических влияний важно, что подобные ТПСП не приводят к шунтированию тока (об этом шунтировании мы упоминали лри обсуждении рис. 8.5). [c.187]

    Одним из наиболее изученных примеров могут служить клетки сетчатки позвоночных. В фоторецепторе в ответ на световое воздействие возникают медленные гиперполяризующие потенциалы, обусловленные снижением натриевой проницаемости и сдвигом мембранного потенциала в сторону равновесного потенциала для К+. В нормальных условиях в фоторецепторах сетчатки генерируются только потенциалы такого рода (рис. 8.11). Эти медленные потенциалы обеспечивают передачу информации о световом воздействии — возможно, путем торможения секреции медиатора из окончаний фоторецепторов на других нейронах сетчатки. Поскольку фоторецепторы представляют собой клетки с очень короткими отростками, потенциалы в них могут достаточно эффективно распространяться электротоническим путем, и импульсов в этих клетках нет. Сигналы с фоторецепторов передаются на биполярные и горизонтальные клетки в этих нейронах тоже возникают исключительно градуальные потенциалы. Роль всех этих клеток в обработке зрительной информации мы рассмотрим в главе 17. [c.195]

    Было обнаружено, что многие нейроны беспозвоночных обладают такими же свойствами, как и клетки сетчатки и обонятельных луковиц. Одним из первых объектов, на котором удалось это показать, был особый рецептор растяжения краба в ответ на растяжение в нем возникали лишь градуальные потенциалы (подробнее см. в гл. 14). Другие примеры — некоторые типы интернейронов центральных ганглиев насекомых. Эти нервные клетки регулируют деятельность мононейронов, обеспечивающих координированные движения конечностей (см. рис. 8.10Б, а также гл. 21). На рис. 8.13 изображен подобный неимпульси-рующий интернейрон. Нервные клетки можно выявлять путем [c.197]


Смотреть страницы где упоминается термин Клетки сетчатки: [c.135]    [c.134]    [c.300]    [c.319]    [c.33]    [c.127]    [c.347]    [c.345]    [c.21]    [c.477]    [c.38]    [c.242]    [c.245]    [c.257]   
Биохимия Том 3 (1980) -- [ c.359 ]




ПОИСК







© 2025 chem21.info Реклама на сайте