Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиперполяризация

    Гиперполяризация — увеличение ионного дисбаланса по обе стороны мембраны, сдвиг мембранного потенциала к более отрицательным значениям. [c.128]

Рис. 17.38. Схема строения палочки, иллюстрирующая предполагаемые изменения проницаемости наружного сегмента для ионов натрия под действием света. Отрицательные заряды (кружочки с минусом внутри) на правой стороне палочки соответствуют потенциалу покоя, на левой стороне — гиперполяризации. Рис. 17.38. <a href="/info/325342">Схема строения</a> палочки, иллюстрирующая предполагаемые <a href="/info/72604">изменения проницаемости</a> <a href="/info/1330135">наружного сегмента</a> для <a href="/info/263999">ионов натрия</a> под <a href="/info/104025">действием света</a>. <a href="/info/17611">Отрицательные заряды</a> (кружочки с минусом внутри) на правой стороне палочки соответствуют потенциалу покоя, на левой стороне — гиперполяризации.

    После достижения максимального уровня потенциала действия натриевые ворота начинают закрываться, и проницаемость мембраны для натрия снижается. Все это время натрий-калиевый насос не прекращает своей работы, в результате чего постепенно восстанавливается исходный потенциал покоя. Реполяризация приводит к снижению пика, или спайка , потенциала действия (рис. 17.4, А) до исходного уровня. Фактически мембранный потенциал снижается до более отрицательного, чем в покое, значения. Происходит гиперполяризация, обусловленная тем, что калиевые ворота закрываются чуть позже натриевых, и клетка теряет через них лишние положительные заряды (ср. ход кривых для Ка+ и К+ на рис. 17.4, Б). Однако ионы калия продолжают поступать в клетку, и постепенно восстанавливаются их трансмембранное электрохимическое равновесие и исходный потенциал покоя. [c.283]

    Каким образом реализуется потенциал действия Возвращаясь к гигантскому аксону кальмара с потенциалом покоя —70 мВ, введем некоторые понятия. Смещение этого потенциала в менее отрицательную область называется деполяризацией, а увеличение отрицательного значения — гиперполяризацией. Оба состояния можно достигнуть, подавая соответствующим образом направленный ток через электрод, введенный в аксон. [c.116]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]


    Методы изучения ионных каналов основаны главным образом на том факте, что ионный ток-это род электрического тока, который может быть измерен почти мгновенно с высокой точностью и чувствительностью. Обычно для этого в клетку, мембрана которой содержит изучаемые каналы, вводят два микроэлектрода (рис. 18-10). Одним из этих двух внутриклеточных электро-дов измеряют величину мембранного потенциала относительно третьего электрода, находящегося в среде, в которую помещена клетка. Другой электрод используют для пропускания тока, который можно измерять. Если ток направлен внутрь клеткн, так что внутренний заряд изменяется в положительную сторону, то мембранный потенциал становится менее отрицательным по сравнению с нормальным потенциалом покоя. Сдвиг потенциала в этом направлении называют деполяризацией. При обратном направлении тока мембранный потенциал становится, напротив, более отрицательным, т.е. происходит гиперполяризация. И в том и в другом случае изменение мембранного потенциала приводит к возникновению ионного тока через мембранные каналы, уравновешивающего ток, пропускаемый с помощью электрода. Мембранный потенциал поддерживается на постоянном уровне тогда и только тогда, когда внутриклеточный заряд не уменьшается и не увеличивается или, иными словами, тогда и только тогда, когда ионный ток, протекающий через мембранные каналы, в точности равен и противоположен по направлению току, подводимому через электрод. Следовательно, если мембранный потенциал остается на постоянном уровне, то по величине тока, протекающего по электроду, можно судить о токе через мембранные каналы. Таким образом, этот электрод служит одновременно и для контроля мембранного потенциала, и для измерения тока, проходящего через каналы. В качестве дополнительного усовершенствования можно с помощью надлежащей электронной схемы автоматически регулировать подачу тока в зависимости от сигнала с электрода, измеряющего потенциал, таким образом, чтобы удерживать мембранный потенциал на любом заданном уровне V. Такой метод называют фиксацией напряжения, а задаваемое значение V-командным потенциалом. Устанавливая разные значения командного потенциала и измеряя при этом ток, необходимый для их поддержания, можно исследовать зависимость мембранной проводимости от мембранного потенциала. [c.80]

    Некоторые нейромедиаторы оказывают не возбуждающее, а тормозное действие на нейроны, приводя к гиперполяризации, а не к деполяризации постсинаптической мембраны. При этом внутри клетки увеличивается отрицательный заряд, и затрудняется достижение пороговой деполяризации, необходимой для генерирования потенциала действия по принципу все или ничего . [c.288]

    Таким образом, информация, которая передается в ЦНС посредством афферентной импульсации, перекодируется в синапсах химическими сигналами. Процесс возбуждения связан с действием ацетилхолина. Он проявляется в деполяризации нейрона, т. е. в торможении работы натриевого насоса. Гамма-аминомасляная кислота, действие которой связано с процессом торможения, вызывает гиперполяризацию нейрона, т. е. усиление работы натриевого насоса. Действие всех перечисленных факторов регулируется активностью ферментов, а активность ферментов, в свою очередь, определяется генетическим аппаратом. [c.9]

    Глутаминовая кислота относится к важнейшим возбуждающим медиаторам в центральной нервной системе (ЦНС) беспозвоночных и, вероятно, играет важную роль и в нервной системе человека. Не исключено, что аспарагиновая кислота также является нейромедиатором. Как у-аминоиасляная кислота, так и глицин считаются основными тормозными медиаторами. Еслн возбуждающие медиаторы вызывают деполяризацию постсинаптической мембраны, то тормозные медиаторы способствуют гиперполяризации, по-виднмому, путем увеличения проводимости мембран в отношении К и С1 . В результате в присутствии тормозных медиаторов возбуждение постсинаптической мембраны происходит с большим трудом, чем в их отсутствие. [c.335]

    Горизонтальные и амакриновые клетки соединяют соседние фоторецепторы, обеспечивая передачу информации в латеральном направлении, биполярные клетки передают информацию внутреннему синаптическому слою. Исследование электрической активности отдельных клеток показало, что рецепторные и горизонтальные клетки (а также в некоторых случаях биполярные клетки) испытывают плавную гиперполяризацию при освещении, не создавая нервного импульса. Иными словами, их мембранный потенциал становится более отрицательным. Это необычное поведение для нейрона. Как правило, нейроны деполяризуются, приобретают положительный мембранный потенциал при возбуждении. Импульсы обычно распространяются в нервных клетках по их длине. В указанных видах нервных клеток сетчатки эти события не происходят. Напротив, положительные нервные импульсы возникают в амакриновых и ганглиозных клетках. Именно последние служат источниками импульсов, поступающих в головной мозг. [c.466]


    Рис, 1.7а. Модель Хагинса высвобождение нервного импульса в палочках и колбочках позвоночных. Индуцированное светом изменение конформацни родопсина высвобождает ионы кальция из внутримембранного пространства между бислойными клетками это приводит к закрытию натриевых каналов плазматической мембраны, что вызывает гиперполяризацию. Таким образом, ионы кальция выступают в роли посредника между мембраной диска, где происходит первичная фотореакция, и клеточной мембраной, генерирующей нервный импульс. Справа на схеме изображены колбочки, дисковые мембраны которых представляют собой просто впячивания плазматической мембраны их функционирование описывается той же моделью с этой небольшой модификацией [3]. [c.16]

    У беспозвоночных зрительный процесс протекает по-другому. Поглощение света приводит не к гиперполяризации, а, напротив, к деполяризации клетки рецептора, так как внутриклеточное пространство становится менее электроотрицательным по отношению к межклеточному, поскольку ионная проводимость мембраны возрастает. Ионы кальция, вероятно, не участвуют в сопряжении обесцвечивания родопсина с изменением проводимости мембраны. Однако ясной картины биохимии светорецеп-дии у беспозвоночных пока еще не существует. [c.20]

    ТОРМОЗНЫЕ СИНАПСЫ. В тормозных синапсах высвобождение нейромедиатора повышает проницаемость постсинаптической мембраны для хлорид-ионов (С1 ) и ионов калия. Когда С1 -ионы устремляются в клетку, а К+-ионы — из нее по своим концентрационным градиентам, происходит гиперполяризация мембраны, называемая тормозным постсинаптическим потенциалом (ТПСП). Другими словами, содержимое клетки становится более отрицательным (до —90 мВ). Очевидно, что это затрудняет пороговую деполяризацию, т. е. генерирование потенциала действия. [c.289]

    Уже упоминался второй тип локального потенциала, ингибиторный постсинаптический потенциал ( .р. з.р.). В то время как при возбуждающем постсинаптическом потенциале происходит деполяризация постсинаптической мембраны, ингибиторный постсинаптический потенциал приводит к гиперполяризации, т. е. дрейфу мембранного потенциала в сторону более отрицательных значений. Это достигается двумя способами либо закрыванием катионных каналов, либо открыванием анионных каналов. Такой процесс называется ингибиторным, так как он подавляет возбудимость мембраны и таким образом ингибирует или тормозит деполяризующий ответ Ыа+- и К -каналов. [c.121]

    Классификация медиаторов как стимуляторных или ингибиторных нецелесообразна, так как их функция зависит от конкретного синапса и постсинаптического рецептора. Ацетилхолин, например, является стимулирующим медиатором в нейромышечной концевой пластинке, и в то же время проявляет ингибирующее действие в синапсе между блуждающим нервом и волокном сердечной мышцы. Мы уже упоминали о различии между никотиновыми и мускариновыми ацетилхолиновыми рецепторами. Однако на примере Aplysia было показано, что функция медиатора может оказаться еще более сложной. У этого организма имеется по крайней мере три типа холинэргических синапсов, или ацетилхолиновых рецепторов два ингибиторных и один возбуждающий. Ингибиторные синапсы различаются по ионной специфичности на одной постсинаптической мембране ацетилхолин увеличивает проницаемость для ионов калия, а на другой — для ионов хлора, в обоих случаях вызывая гиперполяризацию мембраны. На возбуждающем синапсе ацетилхолин вызывает деполяризацию, открывая натриевые каналы. Аналогичная двойная функция описана для медиаторов допамина и серотонина. Поэтому можно сказать только то, что ацетилхолин и глутамат, как правило, являются стимулирующими медиаторами, а глицин, 7-аминомасляная кислота и нор-адреналин — ингибиторными. [c.214]

    Палочка (см. разд. 16.22) состоит из наружного сегмента, содержащего световоспринимаюший аппарат, внутреннего сегмента, где находится множество митохондрий, ядерной области и (в основании клетки) синаптического тельца, образующего контакты с нервными клетками сетчатки. Как это ни удивительно, но в темноте клетка очень сильно деполяризована эта деполяризация удерживает потенциал-зависимые кальциевые каналы синаптического тельца в открытом состоянии, и переход ионов Са внутрь клетки приводит к непрерывному высвобождению медиатора. Деполяризация обусловлена тем, что в плазматической мембране наружного сегмента открыты натриевые каналы. При воздействии света эти каналы закрываются, так что рецепторный потенциал приобретает форму гиперполяризации, приводящей к уменьшению скорости выделения медиатора (рис. 18-50). Так как медиатор оказывает тормозящее действие на многие постсинаптические нейроны, эти нейроны при освещении растормаживаются и в результате возбуждаются. Скорость высвобождения медиатора фоторецепторами изменяется в соответствии с интенсивностью света чем ярче свет, тем значительнее гиперполяризация и тем силь- [c.123]

    GABA относят к ингибиторным медиаторам членистоногих и позвоночных. Ингибирование заключается в предотвращении деполяризации постсинаптической мембраны, необходимой для появления потенциала действия, и происходит оно либо путем гиперполяризации, либо по крайней мере путем стабилизации потенциала покоя. GABA осуществляет это посредством увеличения проводимости для ионов С1 рецепторы GABA, подобно глициновым, связаны, по-видимому, с хлорными каналами (гл. 9). [c.230]

    Одно иэ важнейших событий, происходящих вслед за фотоизомеризацией ретиналя,— поляризация плазматической мембраны зрительной клетки. Эта мембрана в темноте проницаема для ионов натрия. Существующий в темноте градиент ионов натрия поддерживается Na ,K -зaви имoй АТФазой, расположенной в плазматической мембране внутреннего сегмента. Поглощение кванта света каким-то непонятным до сих пор механизмом блокирует поступление ионов натрия в клетку. Понижение скорости поступления ионов натрия внутрь клетки приводит к избыточному отрицательному заряду на внутренней стороне плазматической мембраны, т. е. гиперполяризации кпетки. Именно этот сигнв . [c.613]

    Перенос ионов характеризуется стандартными константами скорости реакции, йа+, i-, которые можно идентифицировать с проницаемостями мембраны для этих ионов. Этот простой подход приводит к тому же результату, что и подход Ходжкина, Хаксли и Катца. Уравнение (3.25) удовлетворительно согласуется с полученным экспериментально значением мембранного потенциала покоя, если предположить, что проницаемость мембраны для выше, чем для Na+ и СГ, так что отклонение от потенциала Нернста для ионов калия не очень велико. В то же время проницаемость для других ионов не пренебрежимо мала. Следовательно, аксон в состоянии покоя должен терять ионы К% а внутри мембранная концентрация Na соответственно должна расти. Этого, конечно не произойдет в присутствии активной Na , K -АТРазы, переносящей калиевые ионы из межклеточной жидкости в аксон и ионы натрия в противоположном направлении. Поскольку этот вид переноса не связан с протеканием тока и не влияет на мембранный потенциал, его п мяято называть электронейтральным насосом. Кроме того, активный транспорт может происходить и не на основе обмена ион за ион . Функционирование такого электрогенного насоса, изменяющего мембранный потенциал, наблюдается, например, при выдерживании мышечного волокна в безкалиевой среде, обогащенной натрием. При этом в результате обмена внутриклеточного калия на внеклеточный натрий волокно загружается ионами натрия. После возвращения волокна в среду, которая по составу соответствует обычной межклеточной жидкости, натрий выводится из клеток активным транспортом до такой степени, что мембранный потенциал сдвигается к более отрицательным значениям (происходит гиперполяризация клеточной мембраны). Гиперполяризацию можно снять уабаином [31]. [c.235]

    Согласно первой (так называемой Са ) гипотезе, конформа-циоииые изменения молекулы родопсина, происходящие в результате поглощения кванта света, приводят к образованию поры в мембране диска. Эта пора служит своеобразным путем выхода Са из внутридискового пространства а цитоплазму. Ионы Са диффундируя к плазматической мембране, могут блокировать натриевые каналы плазматической мембраны. Осноаными предпосылками Са гипотезы явились следующие данные введение ионов Са а клетку в темноте приводит к гиперполяризации, а удаление их иэ клетки — к деполяризации мембраны. Введение хелатирующих агентов снижает чувствительность клетки к свету. [c.614]

    А. Черная кривая-форма потенциала действия, развивающегося при участии только натриевых потенциал-зависимых каналов цветная кривая-потенциал действия прн наличии также и калиевых потенциал-зависимых каналов, помогающих быстрее вернуть мембранный потенциал к исходной отрицательной величине. Обратите внимание, что в присутствии калиевых каналов наблюдается небольшая гиперполяризация, вызванная возрастанием проницаемости мембраны к ионам К . Б. Цветной линией показан тот же потенциал действия, который представлен цветной линией на графике А черные кривые-нзменение натриевой н калиевой проводимости мембраны во время потенциала действия. (A.L. Hodgkin, А. F. Huxley, J. Physiol., 117, 500-544, 1952.) [c.86]

    Специальные преобразователи переводят сенсорные стимулы в форму нервных сигналов. Например, в рецепторе растяжения мышцы окончание сенсорного нерва деполяризуется при растяжении и величина деполяризации-рецепторный потенциал-для дальнейшей передачи перекодируется в частоту импульсного разряда. Слуховые волосковые клетки, избирательно реагирующие на звуки определенной частоты, сами не посылают импульсов, а передают сигналы о величине рецетпорного потенциала соседним нейронам через химические синапсы. Таким же образом действуют фоторецепторы глаза. В фоторецепторах свет вызывает конформационное изменение молекул родопсина, и это благодаря участию внутриклеточного второго посредника ведет к закрытию натриевых каналов в плазматической мембране, к ее гиперполяризации и в результате-к уменьшению количества высвобождаемого медиатора. Далее вставочные нейроны передают сигнал ганглиозным клеткам сетчатки, которые пересылают его в мозг в виде потенциалов действия. Проходя череъ нейронную сеть с конвергентными, дивергентными и тормозными латеральными связями, информация подвергается обработке, благодаря которой клетки высших уровней зрительной системы могут выявлять более сложные особенности пространственного распределения световых стимулов. [c.130]


Смотреть страницы где упоминается термин Гиперполяризация: [c.67]    [c.337]    [c.338]    [c.138]    [c.138]    [c.139]    [c.148]    [c.16]    [c.16]    [c.122]    [c.128]    [c.202]    [c.214]    [c.31]    [c.148]    [c.267]    [c.49]    [c.124]    [c.127]    [c.31]    [c.148]    [c.267]    [c.267]    [c.456]    [c.327]    [c.8]   
Биология Том3 Изд3 (2004) -- [ c.283 , c.288 , c.326 , c.327 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.297 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.297 ]




ПОИСК







© 2025 chem21.info Реклама на сайте