Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериородопсин

    Функционирование бактериальной пурпурной мембраны вызывает неослабевающий интерес. Это связано с тем, что в его основе лежит относительно простой механизм улавливания энергии света без участия хлорофилла, а рецепторный пигмент, бактериородопсин, сходен со зрительными пигментами животных. [c.379]

    С использованием таких методов было успешно проведено воссоздание систем натрий-калиевого насоса (Na+, К+-АТРазы), Са2+-АТРазы (гл. 7), родопсина и бактериородопсина, а также белков нервных и мышечных тканей, таких, как никотиновый ацетилхолиновый рецептор и потенциалзависимый натриевый канал аксональных мембран. Многие из опубликованных данных об удачных воссозданиях искусственных систем следует, однако, рассматривать с осторожностью, так как свойства таких систем слишком сильно отличались от свойств их биологических прототипов. [c.88]


    Бактериородопсин Редокс-цепи [c.306]

    В отличие от мембран палочек и колбочек пурпурная мембрана бактерий являет-ся скорее кристаллической, Рис. 14.25. Цикл функционирования чем жидкой. Молекулы БР бактериородопсина сгруппированы в кластеры [c.478]

    Все известные системы транспорта у прокариот можно разделить на два типа первичные и вторичные. Разобранные выше примеры трансмембранного переноса с участием окислительновосстановительной петли , бактериородопсина или в результате гидролиза АТФ, катализируемого Н —АТФ-синтазой, происходящие за счет химической энергии или электромагнитной энергии света, относятся к первичным транспортным системам (рис. 26, А). В результате их функционирования на мембране генерируется энергия в форме А]1н+, которая, в свою очередь, может служить движущей силой, обеспечивающей с помощью индивидуальных белковых переносчиков поступление в клетку необходимых веществ разной химической природы и удаление из нее конечных продуктов метаболизма. Устройства, с помощью которых осуществляется трансмембранный перенос веществ по градиенту Дрн+ или одной из его составляющих, относятся к вторичным транспортным системам (рис. 26, Б). [c.103]

Рис. 104. Ретиналь А) и предполагаемая организация бактериородопсина в пурпурной мембране Б) ретиналь 1 — полипептидная цепь 2 — липид (по Овчинникову, 1982) Рис. 104. Ретиналь А) и предполагаемая организация бактериородопсина в пурпурной мембране Б) ретиналь 1 — <a href="/info/31816">полипептидная цепь</a> 2 — липид (по Овчинникову, 1982)
    Модифицированные черные пленки с успехом моделируют и другие различные свойства биологических мембран. К этим свойствам можно отнести различные виды рецепции механорецепцию [233, 234], фоторецепцию [235, 236], хеморецепцию [75, 237], взаимодействие биомембран с лекарственными препаратами [77]. Недавно [238] черные углеводородные пленки были использованы для измерения генерации электрического тока липопротеидными комплексами. Так, пленки с встроенным бактериородопсином [238] или хлорофиллом [239, 240] способны преобразовывать световую энергию в электрическую. [c.169]

    РОДОПСИН ( зрительный пурпур ), хромопротеид, содержащийся в палочках сетчатки глаза и ответственный за возбуждение зрит, нерва под действием света. Состоит иа апобелка (опсина) и присоединенного к нему 11-чггс-ретина-ля (альдегида, образующегося из ретинола — витамина А), к-рый при поглощении света изомеризуется в li-mpan -pe-тиналь одновременно возбуждается зрит. нерв. Обратный переход транс-изомера в ггс-изомер в результате ферментативной р-ции и присоединение последнего к опсину приводят к регенерации Р. Галофильные бактерии содержат аналогичный белок (бактериородопсин), также выполняющий ф-цию поглощения световой энергии. [c.510]


    Экстремально галофильные архебактерии, составляющие П1 подгруппу, представлены грамположительньши или грамот-рицательными формами, аэробными или факультативно анаэробными хемоорганотрофами. Характерна потребность в высоких концентрациях Na l. Некоторые виды содержат бактериородопсин и способны использовать энергию света дяя синтеза АТФ. В природе распространены в местах с высокой концентрацией соли в соленых озерах, белковых продуктах, законсервированных с помощью соли, например в соленой рыбе. [c.179]

    Основная проблема создания систем конверсии энергии биомассы в водород связана с превращением этих метаболитов в топливную форму. Для биотехнологии можно было бы воспользоваться и другими механизмами превращения энергии, вьывленными у микроорганизмов. Например, галофильная бактерия На1оЬас1епит каЬЫит способна использовать световую энергию, улавливаемую пурпурным пигментом (бактериородопсином), вмонтированным в мембрану клетки. Молекула пигмента состоит из одной поли-пептидной цепи, к которой прикреплена молекула ретиналя, являющегося светочувствительной частью пигмента. Под влиянием солнечного света изменяется конформация пигмента, приводящая к переносу ионов водорода (Н ) через мембрану. Пигмент является как бы протонным насосом. Молекулы бактериородопси-на располагаются в мембране триадами, и перекачивание протонов через мембрану обеспечивает градиент концентрации Н (АН ), вследствие чего они движутся к наружной стенке, у которой пространство подкисляется и возникает электрохимический градиент (Ац н)- [c.27]

    Предприняты попытки встраивания молекул пигмента в искусственные системы и повыщения эффективности их использования. В частности, растущие бактерии Н. каЬЫит переносят в мелкие водоемы с высокой концентрацией КаС1 и других минеральных солей, в которых исключается загрязнение. У некоторых щтаммов половина клеточной мембраны покрыта пурпурным пигментом, и из 10 л бактериальной культуры можно получить 0,5 г пурпурных мембран. В таких биомембранах содержится до 100000 молекул родопсина. Биомембраны фиксируют на особой подложке, которая должна обладать всеми свойствами, необходимыми для обеспечения тока протонов, а не других ионов. В частности, для этих целей вполне пригодны пористые подложки, пропитанные липидами, которые, сливаясь с мембраной, сплощным слоем покрывают поверхность фильтра. Мембранные фрагменты можно смещивать и с акриламидом с образованием геля. Вместо создания плотных слоев молекул бактериородопсин и липиды могут создавать протеолипосомы, которые встраивают в структуры, обеспечивающие эффективное перекачивание протонов. [c.27]

    В первой части настоящей книги были описаны основные характеристики главных групп природных пигментов. В предыдущих главах второй части обсуждались наиболее известные и понятные биологические функции этих пигментов, а именно окрашивание, улавливание света и распознавание цвета (зрение), а также улавливание энергии света в фотосинтезе. В этой последней главе объединены некоторые другие аспекты фотобиологии, описаны процессы, в которых природные пигменты играют важную роль. Здесь рассмотрены фоторецепторы, такие, как фитохром и флавины, которыми обладают растения и микроорганизмы, а также бактериородопсин, используемый для образования АТР у Haloba teria. [c.391]

    Общим свойством для белкоз пи фрагментов белков, проникающих в липидные бимолекулярные слои, является повышенное содержание в них а-спиральных структур. У мембранных белков, таких, как гликофорин или бактериородопсин, в липидном бимолекулярном слое удалось выявить один или несколько фрагментов, образующих а-спираль и состоящих из неполярных аминокислот [9]. [c.313]

    Единственной в своем роде мембраной является пурпурная мембрана бактерии На1оЬас1егшт ка1оЫит в ней содержится только один белок—бактериородопсин. Полная аминокислотная последовательность бактериородопсина не определена, однако установлена [27] последовательность аминокислот около места связывания фоторецептора (ретиналя) 01у-Уа1-5ег-Азр-Рго-Азр-Ьу8-Ьу5 -РЬе-Туг-А1а-Пе-Ме1 (звездочкой обозначено место связывания). [c.122]

    Аминокислотный состав некоторых внутренних мембранных белков приведен в табл. 25.3.7. Наблюдается удивительное сходство аминокислотного состава (по классам) этих белков, хотя значение такого явления до сих пор не ясно. Поскольку известно, что третичные структуры гликофорина и бактериородопсина различны, ясно, что сходство аминокислотного состава не указывает на высокую степень спиральности тем не менее, возможно, что по-липептидные цепи внутри бислоя в основном имеют форму а-спирали. [c.123]

    Некоторые галофильные бактерии способны использовать энергию света для образования АТР с помощью процесса, который не похож на фотосинтез у растений или бактерий. В частности, Н. halobium используют для образования АТР обычное аэробное дыхание, если имеется в достаточном количестве необходимый для этого кислород. В условиях же нехватки кислорода в клеточной мембране этих бактерий появляются специфические пурпурные образования, так называемые заплаты (pat hes). Пигмент, обусловливающий их пурпурную окраску, представляет собой белок бактериородопсин. Последний служит фоторецептором в процессе превращения энергии света в протонный градиент, который в свою очередь является движущей силой синтеза АТР с помощью хемиосмотического механизма. Фоточувствительная пурпурная мембрана состоит из липопротеинового матрикса, причем с помощью дифракции рентгеновских лучей показано, что молекулы бактериородопси-на расположены в этой мембране в виде жесткой двумерной решетки. [c.377]


    У прокариот известны три типа фотосинтеза I — зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых, пурпурных бактерий и гелиобактерий II — зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам III — зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий. В основе фотосинтеза I и II типа лежит поглощение солнечной энергии различными пигментами, приводящее к разделению электрических зарядов, возникновению восстановителя с низким и окислителя с высоким окислительно-восстановительным потенциалом. Перенос электронов между этими двумя компонентами приводит к выделению свободной энергии. В фотосинтезе III типа окислительно-восстановительные переносчики отсутствуют. В этом случае энергия в [c.96]

    Свойства бактериородопсина представляют существенный интерес для биоэлектроники для создания искусствеиных запоминающих устройств на биологической основе. Полимерные пленки, содержащие БР, изменяют свой цвет при освещении, на них могут быть получены изображения, подобные фотографическим. В отличие от фотоэмульсий, содержащих бромистое сереб-j)o, изменения пленок с БР обратимы. В принципе такие пленки могут быть применены в компьютерах. [c.480]

    На первый взгляд энергозависимый синтез АТР, по-видимому, нельзя рассматривать как нейрохимическую проблему, но между передачей сигнала и энергетическим сопряжением существует некоторое сходство. Оба этих процесса имеют много общего и осуществляются с помощью белков, встроенных в липидные мембраны. Их взаимосвязь четко прослеживается при обсуждении фотозависимого протонного насоса у галофильных бактерий (с. 181). Бактериальный рецептор, аналогичный рецепторам нейрона (гл. 8 и 9), воспринимает сигнал из окружающей среды и передает его внутрь через плазматическую ме.мбрану. Следовательно, энергия света внешнего сигнала обеспечивает внутриклеточный синтез АТР. Изучение бактериородопсина и механизма сопряжения фоторецепции, а также энергозависимого транспорта протонов (и наконец, синтеза АТР) представляет особый интерес при исследовании нейрорецептора. [c.171]

    Рпс. 7.12, Электронная микрофотография высокого разрешения бактериородопсина — светозависимого протонного насоса галофильны.х бактерий. Во многих отношениях эта структура подходит для использования в качестве модели ионного транспорта через другие (нейрональные) мембраны. Каждая молекула состоит из семи спиральных полипептидных цепей, пронизывающих мембрану (б). На карте электронной плотности (а) видно, что три молекулы ассоциированы в единое структурное образование, в котором внутреннее кольцо включает девять и внешнее — двенадцать полипептидных спиралей. В центре расположены липиды. Каждая молекула бактериородопсина является активным протонным насосом. (Воспроизводится с разрешения R. Henderson и M Millan Journals Ltd.) [15]. [c.183]

    Пурпурная мембрана содержит 75% бактериородопсина — белка с М 26 000, образующего основание Шиффа с одной молекулой ретиналя. Молекулы родопсина уложены в такую правильную упаковку, что пурпурная мембрана может рассматриваться как двумерный кристалл . а-Спиральные участки составляют 70—80% полипептидной цепи. Хендерсон и Анвин [15] [c.183]

    Известно несколько реакций, генерирующих Ар,н+. У разных групп прокариот от 1 до 3 из них локализованы в дыхательной цепи. На 2 или 3 этапах АЦн+ генерируется в темновых реакциях переноса электронов в фотосинтетической цепи. Образование АЦн+ происходит при гидролизе АТФ в Н -зависимой АТФ-синтазной реакции. К числу устройств, генерирующих АДн+ посредством трансмембранного переноса Н , относится бактериородопсин галофильных архебактерий. У некоторых фупп прокариот обнаружена локализованная в мембране неорганическая пирофосфатаза, катализирующая расщепление и синтез пирофосфата. Расщепление последнего приводит к генерированию АДн+- Наконец, источником АДн+ на ЦПМ прокариот могут быть процессы, связанные с выделением во внешнюю среду продуктов брожения, транспорт которых через мембрану происходит вместе с протонами. [c.102]

    А — системы первичного транспорта 1 — перенос электронов по окислительновосстановительной цепи 2 — протонная АТФ-синтаза 3 — бактериородопсин. Б — системы вторичного транспорта 1 — пассивный транспорт нейтральных молекул 2 — активный перенос катионов (унипорт) 3 — симпорт анионов и протонов 4 — симпорт нейтральных молекул и Н 5 — антипорт катионов и протонов (по Кошп 5, УеИкашр, 1980) [c.103]

    При недостатке в среде О2 в ЦПМ галобактерий индуцируется синтез хромопротеина — бактериородопсина, белка, соединенного ковалентной связью с Сзо-каротиноидом ретиналем (рис. 104, А). Свое название хромопротеин получил из-за сходства с родопсином — зрительным пигментом сетчатки позвоночных. Оба белка содержат в качестве хромофорной группы ретиналь, различаясь строением полипептидной цепи. Бактериородопсин откладывается в виде отдельных пурпурных областей (блящек) на ЦПМ красного цвета, обусловленного высоким содержанием каротиноидов. При выращивании клеток на свету в условиях недостатка О2 пурпурные участки могут составлять до 50 % поверхности мембраны. В них содержится от 20 до 25 % липидов и только один белок — бактериородопсин. При удалении из среды солей клеточная стенка растворяется, а ЦПМ распадается на мелкие фрагменты, при этом участки мембраны красного цвета диссоциируют, а пурпурные бляшки сохраняются и могут быть получены в виде отдельной фракции. [c.419]

    Использование световой энергии для создания трансмембранного градиента протонов происходит с участием бактериородопсина и не связано с переносом электронов по цепи переносчиков. Этот хромопротеин с молекулярной массой 26 кДа содержит полипептидную цепь, построенную из 248 аминокислотных остатков и на 75 % состоящую из а-спиральньгх участков. Последние образуют 7 тяжей, ориентированных перпендикулярно плоскости мембраны (см. рис. 104, Б). Ретиналь расположен параллельно плоскости мембраны и, следовательно, перпендикулярно белковым тяжам. Связь между ретиналем и полипептидной цепью осуществляется через Шиффово основание, образованное в результате взаимодействия альдегидной группы ретиналя с е-аминогруп-пой 216-го лизинового остатка  [c.421]

    Шиффово основание в темноте находится в протонированной форме. Поглощение кванта света бактериородопсином вызывает изменение конформации ретиналя и приводит к отщеплению И"" от Шиффова основания  [c.421]


Смотреть страницы где упоминается термин Бактериородопсин: [c.75]    [c.68]    [c.238]    [c.238]    [c.178]    [c.555]    [c.123]    [c.123]    [c.377]    [c.377]    [c.378]    [c.378]    [c.379]    [c.392]    [c.181]    [c.184]    [c.417]   
Смотреть главы в:

Биохимия Том 3 -> Бактериородопсин

Биохимия мембран Биоэнергетика Мембранные преобразователи энергии -> Бактериородопсин


Общая органическая химия Т.11 (1986) -- [ c.122 ]

Биологическая химия Изд.3 (1998) -- [ c.305 ]

Биохимия природных пигментов (1986) -- [ c.377 , c.380 ]

Принципы структурной организации белков (1982) -- [ c.98 ]

Нейрохимия Основы и принципы (1990) -- [ c.88 , c.183 ]

Микробиология Издание 4 (2003) -- [ c.419 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.291 , c.712 , c.713 ]

Возможности химии сегодня и завтра (1992) -- [ c.174 ]

Общая микробиология (1987) -- [ c.394 ]

Микробиология (2006) -- [ c.200 ]

Химия биологически активных природных соединений (1976) -- [ c.181 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.370 ]

Проблема белка (1996) -- [ c.60 , c.168 , c.201 , c.202 , c.213 , c.215 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.29 ]

Введение в биомембранологию (1990) -- [ c.22 , c.42 , c.122 ]

Микробиология Изд.2 (1985) -- [ c.286 ]

Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.337 , c.343 ]

Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.0 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.51 , c.52 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.370 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.200 , c.221 ]




ПОИСК





Смотрите так же термины и статьи:

БЕЛКИ — ГЕНЕРАТОРЫ ТОКА Драчев и бактериородопсин

Бактериородопсин аминокислотная последовательность

Бактериородопсин в протеолипосомах

Бактериородопсин в системе протеолипосомы коллодиевая пленка

Бактериородопсин генерация

Бактериородопсин двумерные кристаллы

Бактериородопсин и латеральный перенос

Бактериородопсин квантовый выход

Бактериородопсин конформационные изменения

Бактериородопсин потребность в катионах

Бактериородопсин принцип функционирования

Бактериородопсин расщепление протеиназами

Бактериородопсин сдвиг рК шиффова основания

Бактериородопсин темновая адаптация

Бактериородопсин тирозины, необходимые для ак тивности

Бактериородопсин трехмерная структура

Бактериородопсин фотоцикл

Бактериородопсин электрогенные стадии

Липосомы, содержащие бактериородопсин

Первичная структура бактериородопсина

Пурпурная мембрана и бактериородопсин

Структура бактериородопсина



© 2024 chem21.info Реклама на сайте