Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галло

    Новый прибор начали использовать и другие химики. Одним из них был французский химик Поль Эмиль Лекок де Буабодран (1838—1912), который в течение пятнадцати лет изучал минералы своих родных Пиренеев. В 1875 г., исследуя спектр цинковой руды, он нашел новый элемент, который назвал галлием (Галлия — древнеримское название Франции). [c.103]

    Спустя некоторое время Лекок де Буабодран получил такое количество этого элемента, что смог изучить его свойства. Ознакомившись с сообщением ученого, Менделеев сразу же указал, что новый элемент — это его экаалюминий. Дальнейшие исследования полностью подтвердили справедливость такого утверждения свойства галлия оказались идентичны описанным Менделеевым свойствам экаалюминия. [c.103]


    I — крупные кри-с галлы, 2 — мел-к le кристаллы 3 - раствор. [c.104]

    Было найдено (см., например, работы Луггина), что положение максимума электрокапиллярной кривой оказывается иным, если вместо ртути использовать легкоплавкие сплавы или амальгамы. С наибольшей полнотой этот вопрос был изучен Фрумкиным с сотр. По их данным, потенциал максимума электрокапиллярной кривой галлия составляет —0,69 В, а насыщенной амальгамы индия —0,65 В по водородной шкале. Более того, как было установлено еще Гуи, даже для одного и того же металла — ртути — потенциал максимума электрокапиллярной кривой изменяется в широких пределах в зависимости от состава раствора. [c.250]

    Возможно, что это связано с особыми свойствами поверхности галлия. [c.258]

    К р-элементам III группы относятся типические элементы — бор и алюминий — и элементы подгруппы галлия — галлий, индий и таллий  [c.435]

    Подгруппа галлия располагается в периодической системе непосредственно после семейств d-элементов. Поэтому на свойствах галлия и его аналогов в значительной степени сказывается d-сжатие. Так, от А1 к Ga атомный радиус несколько уменьшается, а энергия ионизации возрастает. На свойствах таллия, кроме того, сказывается и /-сжатие. Поэтому от In к Т1 размер атома и иона увеличивается незначительно, а энергия ионизации даже несколько возрастает. Остальные свойства элементов подгруппы галлия изменяются в той же последовательности, как и в других подгруппах р-элементов. [c.462]

    Как и в ранее рассмотренных подгруппах р-элементов, с увеличением порядкового номера участие s -электронов в образовании связей уменьшается. Особо инертна электронная пара 6s . Поэтому если для галлия наиболее характерна степень окисления Ч-З, то для таллия +1. Индий чаще всего проявляет степень окисления -1-3. [c.462]

    В земной коре Ga, In и Т1 очень рассеяны. Самостоятельных минералов они практически не образуют, а входят в состав некоторых полиметаллических руд. Галлий часто сопутствует алюминию. Природные Ga, In и Т1 состоят из изотопов " Ga (60,5%) и Ga (39,5%) Чп (4,33%) и 1п (95,67%) и 2" Т1 (70,50%) и о Т (29,50%). [c.462]

    Простые вещества. В виде простых веществ галлий, индий и таллий — легкоплавкие серебристо-белые металлы. Индий в отличие от других блестящих металлов наиболее равномерно отражает световые волны всех длин и поэтому применяется для изготовления зеркал. Важнейшие константы рассматриваемых металлов приведены ниже  [c.462]

    Жидкий галлий весьма склонен к переохлаждению и долго не застывает. Из всех известных веществ галлий имеет самый большой температурный интервал существования жидкого состояния. Низкая температура плавления, высокая температура кипения и склонность к переохлаждению позволяют использовать Оа как жидкость в термометрах для измерения высоких температур. [c.463]


    Подобно алюминию галлий и индий на воздухе покрываются прочной оксидной пленкой и поэтому практически не изменяются. Таллий же медленно окисляется. При накаливании Оа, 1п и особенно Т1 энергично соединяются с кислородом и серой. С хлором и бромом они взаимодействуют уже при обычной температуре, с иодом — при нагревании. [c.463]

    Галлий подобно алюминию растворяется в щелочах  [c.463]

    Как и соединения серебра (I), соединения таллия (I) обладают светочувствительностью при освещении они разлагаются. Действием сильных окислителей производные таллия (I) можно перевести в соединения таллия (И1). Соединения галлия, индия и таллия ядовиты  [c.469]

    Сопоставление электронных структур атомов и ионов скандия, галлия и алюминия показывает, что по строению внешних электрон- [c.524]

    Элементы подгруппы галлия, наоборот, проявляют с А1 сходство атомных структур и резкое отличие структур ионов Э "". [c.525]

    Крис галл иза горы [c.10]

    Цеолит, активирован-590— О, пый соединениями 680 О галлия [c.170]

    Все сказанное выше применимо также к бромистому алюминию [15] и хлористому галлию [4]. [c.215]

    Таким образом, здесь, как и при взаимодействии ароматических углеводородов с бромистым алюминием, слабое основание — хлористый метил — проявляет способность к образованию двух рядов производных с хлористым галлием. [c.433]

    Первый патент на производство ароматических углеводородов из нефти посредством пиролиза был получен русским химиком А. Н. Никифоровым еще в 1910 г. Промышленный процесс пиролиза для получения ароматических углеводородов, главным образом толуола, разработай Галлом в Англии и Ритманом в США в годы первой мпровой войны. [c.101]

    В процессе Галла тяжелая бензиновая фракция нагревается в трубчатой печи до 750° при очень высоко скорости потока. При этом наблюдается значительное газообразование. Жидкая составпая часть продуктов реакции содержит 17—18% толуола, 18% бензола и 6% ксилолов. В настоящее время такой процесс в измененном виде и в условиях максимального ограничения коксообразовапия применяется в первую очередь для получения газообразных олефинов. Ароматические углеводороды при этом в известных условиях являются желательным побочным продуктом. [c.101]

    Если в собственно полупроводник ввести акцепторную примесь, например в германий ввести атом галлия, у которого лищь три валентных электрона, то к нему от германия перейдет один из электронов, и в валентной зоне появится дырка. Условием такого перехода является близость энергетического уровня примеси, располагающегося в запрещенной для германия зоне, к верхнему уровню валентной зоны германия. Концентрация дырок в этом случае становится преобладающей, и собственно полупроводник превращается в примесный полупроводиик р-тла, или в р-полупроводник. Для полупроводников с примесной проводимостью пфрфп[ и вместо (5.46) следует писать [c.139]

    На границе раздела двух фаз можно выделить пограничный слой, так называемую поверхностную или пограничную фазу. Она обладает избытком свободной энергии по сравнению с каждой из граничащих фаз. Эта избыточная энергия, отнесенная к единице поверхности раздела фаз, т. е. удельная свободная энергия а, имеет размерность джоуль на квадратный метр (Дж-м ) или ньютон на метр (Н-м- ). В случае границы двух жидких фаз, например жидкого металла (ртути, амальгам, галлия) и раствора, удельная свободная энергия а совпадает с поверхностным или пограничным натяжением 7, имеющим ту же размерность, что и а. Если одна из граничаищх фаз представляет собой твердое кристаллическое тело, например твердый металл (серебро, медь, цинк), то удельная сво бодиая энергия уже не равна поверхностному натяжению, а связана с ним соотношением [c.234]

    Следует отметип,, однако, что для ряда других пар металлов (например, для галлия и ртути) такого постояпстна величины <о не наблюдается. [c.258]

    Совпадение уравнений (11.65) и (11.73), полученных с использованием различных исходных величин, вряд ли может рассматриваться как случайность. Из табл, 11.5 следует, что расхождение между расчетными и опытными значениями нулевых точек лежит в пределах ошибок экспериментального определения S и ы Независимость разностей нулег.ых точек от природы растворителя наблюдается для водных растворов и расплавов солей, в то же время этот вывод не находит полного подтверждения при сопротивлении ряда водных и неводных (органических сред). Точно так же некоторые металлы, папример галлий, резко выпадают из общей закономерности. Такой резул],тат представляется естественным, поскольку расчетные уравнения были выведены на основе упрощающих допущений и отвечают, в лучшем случае, лищь первому приближению теории нулевых точек, не учитывающему многие усложняющие факторы. Одним из наиболее важных факторов является различная адсорбируемость воды (или другого растворителя) на разных металлах, т. е. различная гидрофильность металлов. Это приводит к тому, что в нулевой точке на поверхности разных металлов образуются в неодинаковой степени ориентированные слои молекул воды, создающие добавочный скачок потенциала и смещающие положение нулевой точки. Помимо эффекта такой ориентированной адсорбции воды, подробно рассмотренного Фрумкиным и Дамаскииым, следует, по-вндимому, считаться и с более глу- [c.258]


    Образующиеся в ходе такого взаимодействия гидроксиды и оксиды будут, естественно, изменять свойства металла, в том числе его нулевую точку и работу выхода. Весьма вероятно, что отклонения, наблюдающиеся для галлия и некоторых других металлов, обусловлены именно этой причиной. В пользу такого заключения говорит и уменьшение расхождения при смещении потенциала электрода отрицательнее нулевой точки, т. е. когда становится более вероятным восстановление поверхностных оксидов и переход к чистому металлу. Следует, однако, иметь в ниду, что теория электрокапи.мярных явлений, элементы которой были рассмотрены, относится лишь к случ<1Ю идеально поляризуемых электродов. При переходе к обратимым электродам появляются осложнения, связанные с определением заряда их поверхностей. Во-первых, на обратимых электродах возможно протекание электрохимических реакций и связанный с ними перенос зарядов через границу раздела электрод — раствор. Во-вторых, в этом случае иельз) игнорировать (чего, впрочем, нельзя делать и для любых не идоал1>но поляризуемых электродов) передачу электронов от ионов или от других адсорбированных частиц на электрод и в обратном направлении. Многие [c.259]

    Электрохимические процессы очень часто приводят к образованию новых фаз. Так, при электролизе растворов щелочей у границы электрод — электролит образуется новая газообразная фаза (водород и кислород), возникшая в результате разложения жидкой фазы — воды, а электролиз растворов хлоридов приводит к выделению газообразных водорода и хлора. При электролизе растворов солей металлов на катоде идут процессы образования новых жидких (ртуть, галлий) или твердь[х (медь, цинк, свинец, никель и т. д.) металлических фаз. Во время заряда кислотного аккуму- [ятора твердый сульфат свинца па (одном из электродов превращается в металлический свинец, а па другом — в диоксид свинца. Число этих примеров можно было бы начительно увеличить, но и этого достаточно, чтобы понять, насколько часто следует считаться с воз-никиовением новых фаз в ходе электрохимических процессов. [c.332]

    Рассматриваемые металлы расположены в ряду напряжений до водорода. Галлий и индий растворяются в разбавленных кислотах. В соответствии с устойчивой степенью окисления Т1 при взаимодействии с кислотами образует производные Т1 (I). Галлий в соляной кислоте пассивируется за счет образования нерастворимого в воде Т1С1. [c.463]

    Металлические галлий и его аналоги получают при довольно сложной химической переработке полиметаллических руд. После много-кратой переработки и очистки из руд выделяют их оксиды или хлориды Последние химическим или электрохимическим способом восстанавливают до металлов. Галлий и его аналоги легко сплавляются со многими металлами. При этом части образуются эвтектические сплавы с низкими температурами плавления. Например, сплав 18,1% 1п с 41 %В1, 22,1 % РЬ, 10,6% 5п и 8,2% Сс1 плавится всеголишь при 47 С  [c.463]

    С(1единения галлия (П1), индия (Ш) и таллия (III). Подобно алю инию (И1), для Са (И1), 1п (И1) и Т1 (1П) наиболее характерны [c.463]

    Подобно в и А1, галлий и индий с р-элементами V группы образуют соединения типа A Bv (где А " — р-элёмент III группы, В — р-элемент V группы). Эти соединения изоэлектронны соответствующим [c.466]

    Соединения галлия (I), индия (I) и таллия (I). Для таллия (I) известны -многочисленные соединения, производные же галлия (I) и иидия (I) неустойчивы и являются сильными восстановителями. [c.469]

    Т1) монотонно увеличиваются атомные и ионные радиусы (см. рис. 17). Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться монотонно в противоположность ряду в—Т1. Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энта ьпий образования соединений элементов подгрупп скандия и галлия к типических элементов треть- Рис. 221. Сумма трех первых энер-ей группы (рис. 221). Как видно 1ИЙ ионизации атомов и энтальпии из рнс. 221, во всем ряду В- -Ас образования оксидов Э Оз элемен- [c.525]

    Процесс каталитического риформинга осуществляют на бифункциональных катализаторах, сочетающих кислотную и гидрирующую — дегидрирующую функции. Гомолитические реакции гид — рнрования и дегидрирования протекают на металлических центрах njvaxHHbi или платины, промотированной добавками рения, иридия, OjvOBa, галлия, германия идр., тонкодиспергированных на носителе. [c.180]

    Использование газо пламенных, электродуговых и газоэлектрических мегодов обработки ме галла с<)пряжено с учетом припускон на потери металла вследсгвие окисления в струе кислорода и плавления. Эю определяе г специфику вопроса о припусжах на обработку и допусках для заготовок из прокат а в производсгве сварных конструкций. [c.34]

    Чтобы проверить это предположение, было исследовано взаимодействие хлористого галлия с рядом галоидалкилов [45, 62], а также взаимодействие галоидных солей алюминия с мстил - и этилгалоидами [61], Результаты с несомненностью подтверждают общность предложенного ионного механизма. [c.433]

    Бромистый и иодистый метил также образуют стойкие продукты присоединения 1 1 при низких температурах. Растворенный хлористый галлий очень медленно обменивается с бромистым метилом. При —80° обмен составляет примерно 2% за 24 часа и 25% за 10 дней. Это, несомненно, исключает наличие быстрой и подвижной ионизации. Действительно, так как обмен может протекать по механизму без предварительной ионизации (ЬХХТУ), то даже небольшая наблюдаемая скорость обмена не [c.433]


Смотреть страницы где упоминается термин Галло: [c.462]    [c.465]    [c.465]    [c.465]    [c.170]    [c.48]    [c.281]    [c.346]    [c.207]    [c.207]    [c.433]    [c.434]   
Неионогенные моющие средства (1965) -- [ c.158 , c.377 , c.381 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы



© 2025 chem21.info Реклама на сайте