Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фронт пламени

    Перемещение фронта пламени при турбулентном горении в перпендикулярном направлении к его поверхности называется турбулентной скоростью распространения пламени. Она зависит от физико- [c.80]

    Стабильностью горения называется способность сохранять при горении фронт пламени при различных отклонениях от нормального режима как в сторону бедных, так и богатых смесей. Условием стабилизации пламени в воздушно-реактивном двигателе является равенство скорости распространения пламени и скорости движения потока в камере сгорания. [c.81]


    После зажигания горючей смеси пламя за 0,002—0,003 сек распространяется по камере сгорания в виде фронта. Раскаленные продукты сгорания, расширяясь, резко сжимают и сильно разогревают еще не сгоревшую смесь впереди фронта пламени. В результате этого в ней идет быстрое окисление углеводородов и образуются лег- [c.97]

    Если волну распространения пламени рассматривать как неограниченную плоскость, движущуюся через реакционную систему, тогда несгоревшие газы будут двигаться по направлению к этой плоскости со скоростью г , в то время как сгоревшие газы будут распространяться далеко позади ее со скоростью иь- Различие в скоростях обусловлено различием в плотностях сгоревшего и несгоревшего газов дь Закон сохранения масс требует, чтобы скорость потока массы через любую поверхность была постоянной, так что если V — линейная газовая скорость в любой точке по отношению к стационарному фронту пламени, то скорость массы т = ди постоянна для каж- [c.399]

    К фронту пламени со скоростью пламени т и компенсируемый потоком теплоты К(дТ/дх), движущимся в противоположном направлении от более теплого к более холодному газу. Этот избыток энтальпии возникает при потерях за счет теплопроводности, конвекции и диффузии. [c.402]

    Фронт пламени имеет ширину б/. Вплоть до точки воспламенения (Гг) реакция не самоускоряется, хотя и идет относительно быстро.  [c.403]

    Падение давления но фронту стационарного пламени обычно так мало, что в первом приближении можно рассматривать пламя как изобарное, [см. уравнение (XIV.10.3)]. Кроме того, кинетической энергией, связанной с падением давления, можно пренебречь по сравнению с энергией, сопровождающей тепловые изменения. Однако для достаточно богатых реагирующих смесей и очень экзотермических реакций скорость линейного расширения газов во фронте пламени может приближаться к скорости звука. [c.405]

    Б стационарной детонационной волне ударный фронт сопровождается зоной химической реакции (см. рис. XIV.7). Волна горения характеризуется уменьшением давления и увеличением температуры вдоль фронта пламени. Поскольку в стационарном состоянии фронт пламени должен следовать за ударным фронтом на определенном расстоянии, модель движущейся поверхности не является вполне пригодной для описания стационарной детонации. [c.409]

    Для ацетилена известно так называемое нестационарное горение, при котором часть газа сгорает, а остальное количество сжимается перед фронтом пламени и детонирует уже в сжатом состоянии. Давление, развивающееся при таком разложении, может быть больше в 500—600 раз давления в отраженной детонационной волне. [c.20]

    Индикацию распространения пламени в трубе наиболее выгодно осуществлять, по-видимому, по тепловому или световому излучению пламени или по повыщению давления перед фронтом пламени. В качестве систем индикации рекомендуются приемники лучистой энергии (ПЛЭ), опытные образцы которых выпускаются отечественной промышленностью. Эти фотоумножители высокой чувствительности рассчитаны на УФ-излучение. При проектировании систем индикации рекомендуется учитывать конкретные условия и особенно возможный состав горючей смеси. [c.224]


    Детонация представляет собой самопроизвольное воспламенение и мгновенное сгорание конечной части заряда топливно-воздушной смеси, находящейся перед фронтом пламени, нормально распространяющимся от запальной свечи. [c.204]

    Скорость распространения фронта пламени при этом достигает 2500 м сек против 20—30 мкек при нормальном сгорании. [c.204]

    Механизм химических реакций при этих способах сжигания топлива существенно различается. В первом случае сгорание является следствием реакций, протекающих как во фронте пламени, так и в зоне непосредственного контакта свежей смеси с фронтом пламени. Пламя является своего рола реактором, в котором происходит химическое превращение горючей смеси в конечные продукты сгорания. Во втором случае горячее пламя возникает на завершающей стадии процесса горения. Основные химические реакции протекают в большом объеме смеси до момента появления пламени. В этом случае горячее пламя, естественно, не может оказывать влияния на протекающие в смеси предпламенные процессы.  [c.113]

    Пламена могут быть светящиеся и прозрачные, стационарные (непрерывные) и периодические (дискретные), кинетические (пламена предварительно перемешанных горючего и окислителя) и диффузионные (горючее и окислитель поступают к фронту пламени раздельно и на процесс горения влияет взаимная диффузия реагирующих молекул). В зависимости от аэро- [c.113]

    Фронт пламени представляет собой очень тонкий слой (2— [c.117]

    Известно большое число методов определения и . Их можно подразделить на три группы. К первой относятся методы, основанные на регистрации скорости перемещения фронта пламени в трубе, открытой с одного конца (где проводят поджигание смеси) либо имеющей калиброванные отверстия с обоих концов. Вторую группу составляют методы, основанные на регистрации скорости распространения пламени в бомбах постоянного давления с эластичной оболочкой. К третьей группе относятся методы стационарного пламени (метод горелки). С помощью перечисленных методов были проведены широкие исследования с целью выяснения влияния различных факторов на значение Он. [c.117]

    В рассматриваемом случае зона предварительного превращения соответствует предпламенной зоне, а зона превращения, генерирующего обратную связь, — светящейся реакционной зоне, фронту пламени. Прямая связь между зонами осуществляется поступающими во фронт пламени продуктами превращения из предпламенной зоны (Нг, СО, мелкие фрагменты, возбужденные молекулы О2, N2 ). Обратная связь осуществляется фотонами ИК-излучения, видимого излучения и УФ-излучения пламени. [c.122]

    Самоускоряющееся распространение фронта пламени будет сопровождаться формированием ударной волны перед фронтом пламени. Данный процесс будет продолжаться до тех пор, пока во фронте ударной волны не создадутся условия, приводящие к самовоспламенению смеси и скачкообразному возникновению детонационной волны, распространяющейся стационарно. [c.143]

    Детонация возникает вследствие самовоспламенения части ТВС, до которой фронт пламени от свечи доходит в последнюю очередь. Внешне детонация проявляется в возникновении звонких металлических стуков при работе двигателя на больших нагрузках. При интенсивной детонации мощность двигателя падает и появляется черный дым в отработавших газах. Регулярное возникновение детонации может привести к разрушению и сплавлению головок поршней, к повреждению шатунных и коренных подшипников коленчатого вала. Детонационное сгорание сопровождается резким возрастанием амплитуды вибраций с частотой 5000—6000 Гц [164]. [c.151]

    Таким образом, все исследователи, трактуя несколько по-разному механизм детонации, сходятся в одном возникновение детонации связано с процессами, предшествующими воспламенению последних порций ТВС. Следовательно, детонации могут препятствовать факторы, ускоряющие сгорание последней части ТВС во фронте пламени или затрудняющие возникновение в ней взрывного самовоспламенения. К таким факторам можно отнести усиление турбулизации ТВС уменьшение пути прохож--дения фронта пламени от свечи до наиболее удаленных точек камеры сгорания наличие в последней части ТВС вытесните- [c.152]

    В связи с этим воздух, поступающий в камеру сгорания газотурбинного двигателя, обычно делят на три потока. Первый поток поступает в камеру сгорания, имеющую завихритель (рис. 3.27), через кольцевой зазор между корпусом форсунки и внутренним кольцом завихрителя, чем обеспечивается охлаждение форсунки. В этой зоне топливо распыляется, частично испаряется и воспламеняется а составляет 0,2—0,5 [166]. Второй поток воздуха вводят в зону горения через завихритель и через первые ряды отверстий диаметром 12—30 мм в жаровой трубе. Этот воздух обеспечивает сгорание смеси при температуре во фронте пламени, равной 2300—2500 К, и последующее снижение температуры газов до 2000 К- Коэффициент избытка воздуха при этом возрастает до 1,2—1,7. Роль завихрителя заключается в закручивании потока воздуха и создании воздушного вихря, вращающегося вокруг оси жаровой трубы. При этом в центральной части трубы создается зона пониженного давления, куда устремляется поток из средней части камеры сгорания. Продукты сгорания, движущиеся противотоком к основному потоку распыленного топлива, ускоряют испарение и обеспечивают нагревание топливо-воздушной смеси до температуры воспламенения. Турбулизация газо-воздушного. потока приводит к увеличению скорости распространения пламени, а уменьшение осевой скорости воздуха вблизи границы зоны обратных токов удерживает факел в определенной области. Третий поток воздуха поступает через задние ряды боковых отверстий в зону смешения. Этот воздух снижает температуру газов до значения, допустимого по условию прочности лопаток турбины. [c.164]


    Согласно наиболее широко распространенной теории детонации образующийся фронт пламени сжимает почти адиабатически несгоревшее сырье, вследствие этого температура и плотность сырья повышаются кроме того, несгоревшие газы получают некоторое количество тепла за счет радиационного излучения пламени. Когда температуры и давление становятся больше критических значений, автокаталитические процессы, которые происходят в несгоревшем сырье позади фронта пламени, ускоряются во много раз, что и приводит к самовоспламенению, которое предшествует нормальному окончанию горения. Такое самовоспламенение сопровождается внезапным повышением давления вследствие образования ударных волн скорость последних гораздо выше скорости распространения нормального пламени их частота равна частоте звука, который мы обычно воспринимаем как детонацию [87]. [c.405]

    Рикардо [68, 95] впервые постулировал положение, что детонация вызывается вторичным взрывом, причина которого — спонтанное воспламенение некоторой части несгоревшего сырья, однако какая часть сырья подвергается предпламенному окислению, долгое время установить не удавалось. Самовоспламенению способствует повышение плотности несгоревшего сырья и повышение его температуры, которые вызываются теплом адиабатического сжатия, происходящего при продвижении фронта пламени. Углеводороды и топлива с низкой температурой воспламенения детонируют очень легко [150] кроме того, антидетонаторы повышают температуру воспламенения в смеси с воздухом, в то время как вещества, вызывающие детонацию, дают противоположный эффект [151 —159]. [c.409]

    Итак, в зоне детонации горение происходит в результате самовоспламенения и, как показано было довольно давно, детонация может произойти в различной форме 1) воспламеняется несгоревшее сырье в точке, находящейся впереди фронта пламени  [c.410]

    Теория, объясняющая детонацию самовоспламенением, утверждает, что явление объясняется химическими реакциями в несгоревшей части сырья, находящейся перед фронтом пламени если удается обеспечить малую скорость реакций или их должное течение, если, нормально продвигаясь, пламя уничтожит сырье до того, как предпламенные реакции окисления выйдут из-под контроля, то детонацию можно предотвратить [177, 178]. Впрочем, некоторые научные исследования указывают, что такой [c.411]

    Цикл Отто, используемый в бензиновых двигателях, представляет собой в идеальном случае — цикл постоянного объема. В цикле Отто сгорание происходит мгновенно в момент воспламенения от искры, а требуемая энергия вырабатывается при расширении горячих газов. В практике мгновенное воспламенение никогда не удается осуществить фронт пламени постепенно проходит через несгоревшую часть сырья. [c.435]

    Расширение газов при горении смеси приводит к образованию ударной волны, распространяющейся перед фронтом пламени. Сжатие газа и его нагревание в ударной волне тем сильнее, чем больше скорость движения расширяющихся газов, которая в свою очередь определяется скоростью горения. При быстром сгорании нагревание смеси в ударной волне может стать настолько значительным, что произойдет ее воспламенение перед фронтом пламени. В этом случае создается такой режим горения, при котором послойный процесс поджигания осуществляется не путем теплопроводности, а под действием импульса давления, т. е. путем детонации. Прн детонационном горении образуется комплекс ударной волны и следующей за ней зоны сжатой и нагретой реагирующей смеси — так называемая детонационная волна. [c.23]

    Для ацетилена известно так называемое каскадное двухстадийное) разложение , при котором часть газа сгорает, а остальная часть сжимается перед фронтом пламени и детонирует уже в сжатом состоянии. Давление, развивающееся при таком каскадном разложении, превышает давление, которое может возникнуть в результате детонации даже при увеличении давления вследствие отражения ударной волны от препятствия (торец, поворот и т. д.). [c.23]

    Поскольку при сгорании топлива в камере развивается высокая температура (1500—1800 °С), а материалы камеры, лопаток газовой турбины и реактивного сопла не выдерживают столь высоких температур, горячие газы разбавляют вторичным воздухом непосредственно после зоны горения топлива. При смешении газового потока с вторич — ным воздухом температура смеси снижается до 850 — 900 °С. В зоне горения топлива необходимо создавать условия для обеспечения стабильности процесса горения без срывов пламени. Скорость распространения фроггта г[ламени составляет около 40 м/с. Для снижения скорости газо воздушного потока до величин менее скорости распространения фронта пламени в камерах сгорания устанавливают различ — ные завихрители, стабилизаторы, обтекатели, экраны и т.д. Эти устройства, кроме того, повышают турбулентность движения горючей смеси и тем самым ув 1личивают скорость ее сгорания. [c.102]

    Если сравнить это уравнение с уравнением (XIV.1U.10), то нетрудно заметить, что правая часть уравнения (XIV. 10.20) дает избыток энтальпии по сравнению с уравнением (XIV.10.10). В частности, если ограничиться областями внутри фронта пламени, где не происходит никаких заметных реакций [т. е. R x) = 0], весь избыток энтальпии тСр Т — точно соответствует общему количеству тепла, приобретенному несгоревшим газом в точке (х, Т) в результате тен.попередачи. [c.404]

    АСПВ допускает воспламенение взрывоопасной газовой смеси и включается сразу же после возникновения взрыва. Принцип действия системы состоит в следующем. После воспламенения взрывоопасной горючей парогазовой смеси излучение поверхности фронта пламени мгновенно распространяется по объему защищаемого участка трубы. После того как интенсивность этого излучения достигнет регистрируемой индикатором величины, система индикации срабатывает и подает исполнительный командный электросигнал (за 1—3 мс) на систему впрыска ингибитора (рис. Х-4.). По этому сигналу включается пороховой аккумулятор давления. Под действием давления пороховых газов огнетушащая жидкость, разрушив герметизирующее покрытие на распылительном устройстве, впрыскивается в защищаемый участок трубы в течение 5— 10 мс под постоянным давлением 3,4—40 МПа со скоростью истечения 150—200 м/с. Распространяясь по защищаемому объему аппарата, струи ингибитора распадаются на отдельные капли и, испаряясь и смешиваясь с газовой средой факельной трубы, нейтрализуют взрывоопасную горючую газовую смесь, локализуя тем самым очаг взрыва в зоне его возникновения. [c.223]

    На рис. 3.7 показаны схема ламинарного пламени, распределение в нем температуры и скорости теп-ловцделеиия. Заштрихованная часть представляет собой зону пламени — светящуюся зону или фронт пламени. Слева от светящейся зоны находится свежая горючая смесь. На расстоянии 5—10 мм от фронта пламени в свежей смеси начинают протекать физико-химические процессы, приводящие к подъему температуры смеси и выделению тепла. Эту зону можно назвать зоной предпламен-ного превращения. Справа от светящейся зоны лежит зона продуктов сгорания. [c.117]

    Видно, что процессу распространения пламени присущи все основные элементы, характерные для автоуправляемых процессов, — наличие управляемой (реакционная зона, фронт пламени) и управляющей (предпламенная зона) систем, связанных прямой и обратной связью. Возбуждение процесса (воспламенение) проводится путем внешнего воздействия на исходную горючую смесь таким образом, чтобы в элементарном объеме смеси полностью воспроизводился АХП. [c.122]

    После воспламенения горючей смеси и формирования фронта пламени дальнейшее распространение пламени происходит с са-моускорением (преддетонационный период). В этот период времени, согласно модели АХП-горения, управляющая и управляемые системы функционируют в нестационарном режиме, при котором в каждый последующий момент времени интенсивность излучения пламени и, соответственно, интенсивность потока продуктов предпламенного превращения, поступающих в пламя, непрерывно возрастают. [c.143]

    В процессе горения топливо-воздущной смеси в двигателях с воспламенением от искры могут быть выделены три фазы начальная, в течение которой небольшой очаг горения, возникающий в зоне высоких температур (примерно 10 ООО К) между электродами свечи, постепенно превращается в развитый фронт турбулентного пламени основная фаза — быстрое распространение турбулентного пламени по основной части камеры сгорания при практически неизменном ее объеме, так как порщень находится вблизи верхней мертвой точки (в.м.т.) завершающая фаза— догорание смеси за фронтом пламени и в пристеночных слоях [163]. [c.149]

    При увеличении частоты вращения коленчатого вала сокращается время, отводимое на развитие процесса сгорания, и увеличивается интенсивность турбулизацин горючей смеси. За счет этого скорость распространения фронта пламени в основной фазе процесса возрастает примерно пропорционально увеличению частоты вращения коленчатого вала, и продолжительность основной фазы 02 (в °ПКВ) остается практически постоянной. Длительность начальной фазы 01 (в °ПКВ) с ростом частоты вращения коленчатого вала увеличивается, что вызывает необходимость увеличения угла опережения зажигания ф.,. [c.151]

    Последующее калильное воспламенение может возникать в двигателях с высокими степенями сжатия при работе на бензинах, содержащих антидетонаторы. В этом случае в несгоревшей части ТВС могут образоваться очаги калильного воспламенения после начала распространения фронта пламени от искры свечи за счет оторвавшихся от стенок и взвешенных в рабочем заряде раскаленных (тлеющих) частиц нагара, отложившихся в камерах сгорания в процессе достаточно длительной работы двигателя на режимах малых нагрузок и холостого хода и отслаивающихся от стенок при увеличении нагрузки. От таких тлеющих частиц начинают распространяться дополнительные фронты пламени и скорость сгорания в конце основной фазы резко возрастает при этом значения dPIdff могут достигать 1,0 МПа/°ПКВ, тогда как при нормальном сгорании они обычно не превышают 0,2 МПа/°ПКВ. [c.153]

    Зависимость, приведенная для коэффициента турбулентного обмена, аналогична зависимости для коэффициента молекулярной диффузии D= 3lav, где /о—длина пути свободного пробега молекулы, а и — средняя скорость молекулы. Если I не превосходит глубину фронта пламени в ламинарном потоке бн, то поверхность пламени должна остаться гладкой , однако, как оказалось, и в этом случае наличие турбулентности интенсифицирует обменные процессы. Величина 5н равна примерно 1 мм. Теория рассматривает поверхностное горение турбулентных объемов газа, когда 1<8 , и объемное горение, когда [c.166]

    Рассмотрение процесса с чисто физической точки зрения приводит к выводам, что скорость турбулентного пламени Ут определяется не масштабом турбулентности и значением числа Рейнольдса, а величиной пульсационной составляющей скорости потока. Существенно то, что при большой степени турбулентности потока Ут не зависит от горючих свойств газовой смеси, которые определяют нормальную скорость распространения пламени Этот результат является следствием рассмотрения процесса только с чисто физической точки зрения. При больших а выброс языков фронта пламени настолько значителен, а поверхность пламени так велика, что сгорание газа, попавшего в зону горения, должно происходить очень быстро и практически не должно зависеть от нормальной скорости горения и , а следовательно, и не тормозить выброс новых языков пламени. При экспериментальной оценке От зависит от [c.166]

    Неизвестно, что действительно происходит при детонации. Однако спектрографическими и фотографическими исследованиями было установлено, что при нормальной вспышке в двигателе внутреннего сгорания возникает узкая идеально выпуклая волна горения, которая движется вдоль камеры сгорания в направлении от свечи зажигания волны имеют практически постоянную скорость (до 75 м1сек на величину скорости влияют различные факторы). При детонации фронт пламени изменяется только во время сгорания последней части сырья. Кроме того, пламя передвигается гораздо быстрее — со скоростью около 300 м сек. Очевидно также, что детонация возникает только после того, как большая часть горения завершена. [c.405]

    Как указывалось выше, свечение возникающего пламени значительно усиливается в период детонации. Уитроу и Рассвей-леру удалось показать спектрографическими методами [118, 124], что полосы спектра связей С—С и С—Н при детонации имеют значительно меньшую интенсивность и что у спектра несгоревших газов в детонационной зоне непосредственно перед взрывом большее поглощение, чем у спектра тех же самых газов в тот же момент, но при бездетонационном горении. Кроме того, поглощение при детонации усиливается, если топливо-воздушная смесь нагрета это наводит на мысль, что вещества большой поглощающей силы образуются в нагретом сырье, когда оно сжимается поршнем и когда к нему приближается фронт пламени. Добавка к бензину антидетонатора в количествах, достаточных для подавления взрыва, ослабляет полосы поглощения несгоревших газов и восстанавливает интенсивность линий С—С и С—Н в сгорающих газах. Очевидно, что перед автовоспламенением, которое вызывает детонацию, появляются соединения (неидентифициро-ванные) с высокой поглощающей способностью. [c.411]

    Узкая зона, в которой происходит подогрев смес и протекает химическая реакция горения, называете фронтом пламени. Он не имеет резко очерченных грг ниц, а толщина его не превышает десятых долей миллп метра. Фронт пламени условно можно считать повер  [c.20]

    Возможные режимы недетонационного горения отличаются скоростями распространения пламени, что обусловлено неодинаковым развитием поверхности фронта пламени. Быстрое горение в замкнутом объеме, когда скорость распространения пламени равна ие скольким сотням метров в секунду, обычно называют взрывом. [c.21]


Смотреть страницы где упоминается термин Фронт пламени: [c.103]    [c.176]    [c.400]    [c.103]    [c.117]    [c.148]    [c.152]    [c.21]   
Вибрационное горение (1961) -- [ c.322 ]

Горение (1979) -- [ c.13 ]

Теория горения и топочные устройства (1976) -- [ c.123 ]

Кинетика и механизм газофазных реакций (1975) -- [ c.470 , c.477 ]

Охрана труда в химической промышленности (0) -- [ c.156 ]

Охрана труда в нефтеперерабатывающей и нефтехимической промышленности (1983) -- [ c.129 , c.132 ]

Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.0 ]

Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.9 , c.12 , c.34 , c.38 , c.152 , c.176 ]

Кинетика и механизм газофазных реакций (1974) -- [ c.470 , c.477 ]




ПОИСК





Смотрите так же термины и статьи:

Фронт



© 2025 chem21.info Реклама на сайте