Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взрыв возникновение

    Основными причинами возникновения и распространения взрыва и пожара, как сказано в кратком докладе специалистов, расследовавших данный случай, явились  [c.266]

    Автоматические системы подавления взрывов (АСПВ). Взрывоподавление основано на торможении химических реакций, достигаемом подачей в зону горения огнетушащих составов, и наличии некоторого промежутка времени от момента возникновения взрыва до его максимального развития. Этот промежуток времени, условно названный периодом индукции Тинд, зависит от физико-химических свойств горючей смеси, а также от объема и конфигурации защищаемого аппарата. Давление в аппарате при взрыве в период индукции растет сравнительно медленно. Например, для большинства горючих углеводородных смесей время индукции составляет приблизительно 20% от общего времени взрыва. [c.176]


    Возникновение самых тяжелых элементов — урана, тория, трансурановых элементов — происходит при взрыве сверхновых звезд. При таком взрыве высвобождается колоссальная энергия и температура достигает порядка 4 млрд. градусов, что позволяет осуществиться реакциям образования самых тяжелых элементов. [c.666]

    Широко применяемые в цехах жидкого хлора аппараты, водной емкости которых совмещены испаритель хладоагента (аммиака) и конденсатор хлора, в процессе эксплуатации подвергаются сильной коррозии (раствором хлористого кальция или поваренной соли).-В последние годы в цехах большой производительности применяют конденсаторы трубчатого типа с использованием в качестве хладоагента фреона. Применять в холодильнике трубчатого типа в качестве хладоагента аммиак опасно, так как хлоро-амми-ачнай смесь при коррозии труб или образовании неплотностей в соединениях может привести к взрыву. Во избежание коррозии в рассол вводят пассивирующие добавки (соли хромовой, фосфорной и других кислот), поддерживают слегка щелочную реакцию рассола (pH = 7,5—8), периодически проверяют отсутствие в рассоле растворенного аммиака, хлора. При возникновении аварийных ситуаций (быстром росте содержания водорода в абгазах или в хлоргазе) предусматривают аварийную подачу сухого азота или воздуха в хлоропровод на вводе в цех сжижения. [c.55]

    Так, произошел взрыв в резервуаре емкостью 127 тыс. содержащем ранее бензин. Резервуар готовили к ремонту. Продукт из него откачали и на продуктовых линиях поставили заглушки. К моменту возникновения взрыва резервуар продували воздухом. Вентилятор с двигателем взрывозащищенного исполнения работал до взрыва в течение 4 ч. Максимальная скорость вращения лопастей достигала 3160 об/мин, максимальная скорость двигателя составляла 3480 об/мин. Как видно из приведенных данных, характеристика двигателя не соответствовала характеристике вентилятора, и последний разрушился. От трения и нагрева металла возникли искры, от которых воспламенились пары бензина. Взрывом разрушило перекрытие резервуара горение паров бензина в резервуаре продолжалось около часа. После взрыва одну лопасть вентилятора нащли внутри резервуара, другую в корпусе вентилятора, третью и четвертую не нашли. [c.140]

    Утечка жидких углеводородов при эксплуатации трубопроводов и оборудования может привести к серьезным последствиям. Особенно опасна утечка сжиженных углеводородных газов, так как при их воспламенении часто возникает фронт нестационарного быстрого горения или детонации. Условия возникновения детонации еще недостаточно изучены. До недавнего времени считали, что детонировать могут лишь быстрогорящие смеси водород— воздух, водород — кислород смеси непредельных углеводородов с воздухом и кислородом смеси предельных углеводородов с кислородом. В настоящее время считают, что детонировать могут почти все газообразные углеводороды в смеси с воздухом [45]. Для детонации (взрывов) характерны три особенности создается пик давления, примерно в 20 раз превышающий пик давления обычного взрыва при тех же начальных условиях фронт детонации распространяется со сверхзвуковыми скоростями детонация создает прямой удар разрушительной силы, а не гидростатическое давление. [c.111]


    В ряде случаев причинами возникновения аварий продолжают оставаться несовершенство, отсутствие или ненадежность в работе контрольно-измерительных приборов, неудовлетворительный ведомственный надзор за качеством работы средств контроля и автоматики технологических процессов, работоспособностью средств блокировок и сигнализации. Отмечены случаи, когда отсутствие надежных блокировок безопасности, предупреждающих аварийное состояние при изменениях до опасных пределов температуры, давления, уровней жидкости, приводило к образованию взрывоопасных смесей в закрытой аппаратуре и трубопроводах и взрывам. [c.6]

    Таким образом, применение активных средств защиты, к которым, прежде всего, следует отнести автоматические системы подавления взрывов, позволяет значительно уменьшить опасность производств, занятых переработкой взрывоопасных продуктов. Анализ литературных данных показывает, что наиболее перспективными являются активные системы взрывозащиты, Активными их называют потому, что они включаются в работу в момент возникновения взрыва по сигналу индикатора, локализуют и подавляют взрыв прежде, чем он достигнет разрушительной силы. [c.175]

    Для повышения уровня пожарной безопасности в насосных сводят до минимума размеры промежуточных емкостей, мерников, напорных баков, рефлюксных емкостей и других подобных им аппаратов, заменяя их приборами автоматического дозирования питания и давления. Вместе с этим наиболее пожаро- и взрывоопасные вещества технологического процесса стремятся заменять менее опасными или совсем негорючими. В насосных станциях предусматривают устройства для уменьшения количества горючих веществ (аварийный слив жидкостей, стравливание горючих газов, эвакуация сгораемых материалов, веществ и ценного оборудования) в случае появления угрозы аварии, взрыва, возникновения пожара. [c.100]

    В функции газоспасательной службы входит контроль за соблюдением правил безопасности при газоопасных ремонтно-технических и технологических работах, выполнение в случае необходимости своими силами газоопасных работ, требующих применения изолирующих кислородных приборов, проверка наличия, соответствия, исправности, а также ремонт всего газоспасательного оснащения, находящегося в газоспасательном подразделении и на объектах предприятия участие в составлении перечня газо-, взрыво- и пожароопасных мест и работ, а также планов ликвидации аварий и в проведении учебных тревог контроль состояния газовоздушной среды в производственных помещениях и в других местах, где возможно образование и распространение вредных веществ в опасных концентрациях участие в разработке мероприятий по снижению концентрации вредных паров, газов и пыли в производственных зонах изучение газоопасных объектов предприятия и причин возникновения загазованности для предупреждения газовой опасности инструктаж и обучение производственного персонала правилам безопасного ведения работ в газоопасных местах, способам пользования газозащитными средствами и основным приемам спасения пострадавших при авариях и несчастных случаях контроль за допуском к работе в газоопасных местах только обученного цехового персонала, снабженного соответствующими газозащитными средствами, а также за исправностью и правильным применением этих средств широкая массово-разъяснительная работа среди рабочих, служащих и инженерно-технических работников обслуживаемого предприятия в области газобезопасности участие в комиссиях по приемке в эксплуатацию газоопасных объектов при окончании их строительства или ремонта обучение членов добровольной газоспасательной дружины газоспасательному делу, методам и приемам ведения аварийно-спасательных работ. [c.126]

    Причина пожара или взрыва — это сочетание причин и условий, приводящих к контакту горючей или взрывоопасной среды и источников воспламенения. Совокупность всех причин и условий, вызывающих взрыв, возникновение и распространение пожаров и определяющих его масштабы и последствия, характеризует пожаро- и взрывоопасность производственных помещений, установок, агрегатов и оборудования. [c.246]

    Ряд химических реакций при получении некоторых пластмасс сопровождается интенсивным выделением большого количества тепла, что может также послужить причиной возникновения пожара или взрыва. Возникновению пожаров способствует неисправность различного рода электрического и другого производственного оборудования, при которой могут образоваться искры или воспламениться оборудование от сильного нагрева. [c.3]

    Если скорость разветвления цепей значительно превышает скорость их обрыва, то цепная реакция может проходить со взрывом. Цепной взрыв следует отличать от термического взрыва, связанного с экзотермическим характером реакции. Когда скорость возникновения теплоты в системе, в которой проходит химическая реакция (не только цепная), значительно выше скорости отвода теплоты, температура начинает быстро возрастать. Это обусловливает стремительный рост скорости реакций, приводящий к взрыву. [c.232]


    Проведенные исследования и подробное изучение фактов возникновения взрывов и пожаров от статического электричества позволили установить ряд причин образования заряда статического электричества в топливах  [c.230]

    Производственные процессы должны разрабатываться так, чтобы исключалась вероятность возникновения взрыва на любом взрывоопасном участке в течение года. В случае технической невозможности исключения вероятности возникновения взрыва производственные процессы должны разрабатываться так, чтобы вероятность воздействия опасных факторов взрыва на людей в течение года не превышала 10 на человека. При этом вероятность возникновения взрыва на любом взрывоопасном участке производственного процесса должна быть обоснована и согласована с органами государственного надзора. [c.20]

    Автоматическое прекращение работы установки. В ряде случаев специфика производства требует немедленного прекращения работы всей технологической схемы при возникновении взрыва в одном из аппаратов. Это обычно позволяет предотвратить еще более серьезные аварийные ситуации. Автоматическое прекращение работы технологической линии или отдельного аппарата достигается специальными устройствами, срабатывающими от индикатора взрыва это в некоторых случаях дает возможность выявить причину возникновения взрыва в технологическом оборудовании. Как правило, автоматическое прекращение работы установки применяется в различных вариантах с другими активными методами взрывозащиты. Например, в схеме взрывозащиты установки для измельчения пиритов наряду с защитой циклона предохранительными мембранами, срабатывающими от детонаторов, предусмотрена ее автоматическая остановка. Кроме того, пламя, возникающее в любом месте этой установки, гасится флегматизирующим веществом из быстродействующего огнетушителя, размещенного у входного отверстия вентилятора. При этом тушащее вещество эффективно циркулирует в системе до полной остановки вентиля- [c.178]

    Образование пожаро- и взрывоопасных продуктов, возможность возникновения нестойких, разлагающихся со взрывом пере-кисных соединений и ацетиленидов меди делают производство моновинилацетилена крайне пожаро- и взрывоопасным. [c.62]

    Общий принцип действия системы подавления взрывов заключается в следующем. При возникновении горения сигналы обоих извещателей поступают в сигнально-пусковой блок, обеспечиваю- [c.102]

    Для каждой взрывоопасной пыли имеется еще верхний предел воспламенения, под которым понимают максимальное количество пыли, содержащееся в единице объема, способное распространить взрыв. Чрезмерно большие количества пыли мешают возникновению и распространению взрывов, так как в этом случае в смеси содержится слишком мало кислорода для сгорания пыли. [c.263]

    Анализ аварий, завершающихся взрывом паро-газовоздушных смесей в помещениях и на открытых установках, показывает, что большинство из них является следствием ряда упущений или неправильных действий обслуживающего персонала, неисправности или несовершенства отдельных видов оборудования, контрольно-измерительных приборов и приборов автоматики. Аварии с момента их возникновения проходят определенные стадии, на каждой из которых их можно локализовать и тем самым предотвратить взрывы. [c.254]

    Хлорирование, происходящее с замещением атомов водорода атомами хлора, является экзотермической реакцией, ЛН составляет от —23 ООО до —27 ООО кал в зависимости от природы соединения. Реакция может происходить взрывообразно с образованием углерода и хлористого водорода. Чтобы контролировать процесс, необходимо снимать тепло путем применения избытка углеводорода или разбавителя либо же путем охлаждения. Опасность возникновения взрыва можно свести к минимуму, применяя низкие концентрации хлора, этого можно достичь путем введения хлора через форсунки на различных стадиях со скоростью истечения, большей скорости распространения пламени. [c.57]

    При подробном изучении аварий по стадиям их развития установлено, что время от начала возникновения аварии до завершающего взрыва колеблется в широких пределах и зависит от скорости образования взрывоопасной смеси, физико-химических и взрывоопасных свойств вещества, а также от наличия источника инициирования и мощности импульса. Большинство аварий (около 75%) сопровождается локальными хлопками в течение 10—20 мин и развивается во времени, достаточном для предупреждения взрывов. Известны случаи, когда вследствие коррозии металла или по другим причинам взрывоопасные газы проникали в помещение в незначительном количестве. Однако отсутствие необходимых средств автоматического контроля степени загазованности и неэффективность противоаварийной вентиляции не позволяли избежать образования взрывоопасной смеси. [c.256]

    Более углубленное представление о механизме антидетонационного действия ТЭС, основанное на теории многостадийного развития детонации, дано в работах А. С. Соколика [165, 180]. Он подчеркнул важную роль свободных радикалов, образующихся при распаде металлоорганического антидетонатора, и установил принципиальное различие в действии ТЭС на задержку появления первичного холодного пламени и на задержку в развитии вторичных холоднопламенных процессов, ведущих к горячему взрыву. Экспериментально было показано, что введение ТЭС в топливо-воздушную смесь резко ослабляет интенсивность первичного холодного пламени (что фиксируется по свечению и приросту давления), замедляет появление вторичного пламени и, наконец, затрудняет возникновение горячего взрыва, делая его возможным лишь при более высоких давлениях. [c.171]

    Для возникновения загорания и взрыва помимо горючей и взрывоопасной среды, как указывалось выше, необходим источник (импульс) воспламенения. Источниками воспламенения горючих газов и жидкостей при получении аммиака могут явиться открытое пламя, электрическая дуга и пламя горелок при электро- и газовой сварке, искры, вызываемые электрическим токо.ч и образующиеся при ударе и трении. Кроме того, пожары и взрывы могут возникать от статического электричества, первичных п вторичных проявлений молнии. [c.28]

    В ряде случаев импульсом взрывов во взрывопожароопасных производствах при возникновении взрывоопасной концентрации служат удары твердых материалов, при которых образуются искры. [c.352]

    Твердые перекисные соединения, способные к взрывчатому разложению, характеризуются очень высокой чувствительностью к удару и трению. Известны случаи возникновения огня и взрыва сухой перекиси бензоила при подметании ее веником и при отвинчивании пластмассовой пробки со стеклянного сосуда от попадания перекиси и органической пыли на резьбу бутыли. Был отмечен сильный взрыв перекисного производного формальдегида на часовом стекле при перемешивании его шпателем. [c.135]

    Конструкциям следует придавать огнестойкость, чтобы обеспечить сохранность установки при возникновении пожара в результате взрыва паров. Перед этим необходимо учитывать возможность частичного повреждения водяной системы пожаротушения. [c.320]

    Механизм действия металлоорганических антидетонаторов различных групп может иметь существенные отличия [182, 183]. Так, ТЭС, ТМС, ферроцен и циклопентадиенилтрикарбонилмарганец влияют и на температурные пределы холоднопламенного процесса, и на границы горячего взрыва карбонилы железа, марганца и, никеля увеличивают главным образом температурные пределы возникновения холодного пламени и не оказывают влияния на границы горячего взрыва. [c.172]

    Такой способ стравливания газовых пробок приводит к загазованности территории предприятия и к возникновению опасности взрывов и пожаров. [c.118]

    Как отмечалось, при давлении ацетилена до 1,4 ат не удается вызвать его взрывной распад под действием теплового импульса плавящейся платиновой или молибденовой проволоки (т. пл. 2500 °С). Поэтому при производстве и транспортировании ацетилена по трубопроводам давление не должно превышать указанную выше величину. При этом обеспечивается относительная безопасность, так как в условиях правильно организованных производства и транспортирования ацетилена маловероятно возникновение инициатора взрыва, превосходящего действие теплового импульса пережигаемой молибденовой проволоки. Однако более сильный инициатор может вызвать взрывное разложение ацетилена при давлении ниже 1,4 ат (взрывы на заводах в Хюльсе и Шкопау). В последнее время осуществлен экспериментальный взрыв ацетилена даже при давлении около 0.65 ат. [c.60]

    Существует два типа цепных процессов — с неразветвляющимися и разветвляющимися цепями. Примером реакций с неразветвляющимися цепями служит процесс фотохимического синтеза хлороводорода. В темноте сухие газообразные хлор и водород при обычной температуре не взаимодействуют. При освещении смеси реакция протекает со взрывом. Возникновение цепной реакции связано в данном случае с образовнием под действием квантов света реакционноспособных частиц — атомов хлора (энергия диссоциации молекул I2 меньше, чем молекул Н2)  [c.142]

    Предотврашение взрывов, возникновение которых непосредственно связано с химическими процессами и, в частности, с процессами окисления, достигается главным образом регулированием и поддержанием состава смеси с тем, чтобы содержание в ней горючего было вне области воспламенения, т. е. ниже нижнего или выше верхнего концентрационного предела. При соблюдении этого условия, как уже раньше было показано, смесь оказывается невзрывающейся и не способной к устойчивому горению. Нижний концентрационный предел воспламенения большинства горючих невелик — порядка нескольких или даже менее одного процента и проведение процесса при еще меньшей концентрации газа, как правило, нетехнологично. Поэтому его применяют относительно редко (например, при окислении этилена до этиленоксида), чаще же процесс проводят с богаты.ми смесями. У многих горючих газов верхний предел от-лосительпо невелик п, следовательно, такая смесь будет содержать достаточно кислорода для ведения процесса. Так, при давлении 0,1 МПа (1 кгс/см ) верхний предел кислородных смесей углеводородов от метана до гексана составляете —40% (об.), а у воздушных смесей еще меньше—15—7% (об.), следовательно, имеется возможность обеспечить необходимое количество окислителя для технологичности процесса. [c.238]

    АСПВ допускает воспламенение взрывоопасной газовой смеси и включается сразу же после возникновения взрыва. Принцип действия системы состоит в следующем. После воспламенения взрывоопасной горючей парогазовой смеси излучение поверхности фронта пламени мгновенно распространяется по объему защищаемого участка трубы. После того как интенсивность этого излучения достигнет регистрируемой индикатором величины, система индикации срабатывает и подает исполнительный командный электросигнал (за 1—3 мс) на систему впрыска ингибитора (рис. Х-4.). По этому сигналу включается пороховой аккумулятор давления. Под действием давления пороховых газов огнетушащая жидкость, разрушив герметизирующее покрытие на распылительном устройстве, впрыскивается в защищаемый участок трубы в течение 5— 10 мс под постоянным давлением 3,4—40 МПа со скоростью истечения 150—200 м/с. Распространяясь по защищаемому объему аппарата, струи ингибитора распадаются на отдельные капли и, испаряясь и смешиваясь с газовой средой факельной трубы, нейтрализуют взрывоопасную горючую газовую смесь, локализуя тем самым очаг взрыва в зоне его возникновения. [c.223]

    Для осуществления эффективных противоаварийных мер на различных опасных стадиях технологическрго процесса необходимо гзнать условия возникновения взрыва в аппаратуре взрыво- и пожароопасные свойства образующихся в процессе реакции побочных продуктов и их смесей взаимное влияние параметров технологиче- СКрго режима при возможных отклонениях каждого из них и др. [c.105]

    Бензол запрещается сливать в канализацию. Пустые цистерны, в которых хранился бензол, после очистки их при помощи пара, через некоторое время снова становятся взрывоопасными и могут -явиться причиной взрыва паров бензола, оставшегося в трещинах, щелях и местах проржавления. Поэтому после оч1истки паром должны быть приняты соответствующие меры по ликвидации угрозы возникновения взрыва и пожара. [c.88]

    Частицы волокнистых материалов хотя и не относятся к пылям, но при возникновении местной вспышки или взрыва пыли они также могут перейти во взвешенное состояние. Воспламенение пылей нельзя выразить каким-либо одним параметром. Принятые официальные классификации и характеристики пылей являются весьма условными и не могут учитывать всего многообразия факторов, оказывающих влияние на воспламенение пылей. [c.262]

    Воспламенение смеси пыли с воздухом является одним из важных свойств горючих пылей она определяет способность их распространять пламя по всему объему взвешенной пыли в воздухе при определенной минимальной концентрации этой пыли. Под давлением, возникающим при самовоспламенении смеси пыли с воздухом, в воздух поднимается столько пыли, осевшей вблизи места воспламенения, что взрыв может распространиться далеко за пределы очага возникновения вспышки. Для ограничения силы взрыва принимают соответствующие меры, о которых будет сказано ниже. [c.262]

    При взрыве бьита обрушено здание (рис. ХП-5) и выведено из строя технологическое оборудование. Причиной загорания явилось возникновение огня ( жучка ) во второй паре жерновых мельниц ао время пуска (поджатия камней), что привело к аоопламенеяию продукта а течке н ковшевом элеваторе. Затем пламя распространилось через вентиляцию во все просевающие аппараты и фильтр-мешок, вызвав взрыв в них пылевоздушеой смеси. Мембраны взрывных клапанов аппаратов были разрушены. На этом предприятии в течение семи лет эксплуатации было зафиксировано 68 загораний и взрывов. В 47 случаях источником огня явились жерновые мельницы, в 14 случаях мельницы ударного типа и семь случаев произошло по другим причинам. [c.270]

    Следует отметить, что подбор и разработка автоматических систем подавления взрыва (АСПВ) пылевоздушных смесей представляют собой сложную техническую задачу, так как период индукции (промежуток времени от момента возникновения взрыва до повышения давления в замкнутом объеме) зависит от множества факторов (физико-химических свойств горючей среды, объема и конфигурации аппарата и др.). [c.288]

    Как известно, конвертированный и коксовый газ содержит взрывоопасные и токсичные вещества. Растворы моноэтаноламина и метанола, применяемые для очистки газов, токсичны, а жидкий азот при попадании на кол<у вызывает обмораживание. Кроме того, процессы очистки идут при высоких и очень низких температурах. Возможность возникновения пожара или взрыва, отравления или получения ожога может создаваться при нарушениях технологического режима, подсосе воздуха в газ или в результате образования в производственных помещениях взрывоопасных и отравляющих газовоздушных смесей при прорыве газов и жидкостей через неплотности оборудования, коммуникаций и запорной арматуры. Поэтому герметичность оборудования и трубопроводов отделения очистки должны проверяться ежесменно. Запрещается подтягивать крепежные детали фланцевых соединений для ликвидации пропусков газов и жидкостей, если система находится под избыточным давлением. Давление следует повышать и снижать постепенно, по установленному для данного оборудования регламенту. Инертный газ, применяемый для продувок, должен содержать не более 3% (об.) кислорода и совершенно не иметь горючих примесей. Перед продувкой газ должен подвергаться анализу. [c.52]

    Возможность возникновения детонации при взрыве газо-воздушных или газо-кислородных смесей, которые находятся в помещениях большого объема илн в виде газового облака, в настоящее время мало исследована, хотя в мировой практике известны взрывы таких смесей в помещениях, квалифицировавш и е с я как детонация. Например, [c.35]

    Временными правилами и нормами запрещается механическая вытяжная вентиляция в помещениях, где могут образоваться взрывоопасные концентрации горючих газов (Н2, С2Н2 и др.), из-за возможного инициирования взрыва искрами, возникновение которых на трущихся поверхностях вентилятора не исключено. По-видимому, это требование излишне при использовании взрывобезопасных вентиляторов, изготовленных из алюминия и дуралюмина. В таких вентиляторах не происходит трения алюминия о сталь, а образование искр, поджигающих горючие смеси, при трении алюминия и дуралюмина невозможно. [c.128]


Смотреть страницы где упоминается термин Взрыв возникновение: [c.238]    [c.972]    [c.229]    [c.21]    [c.112]    [c.255]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.550 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.550 ]




ПОИСК





Смотрите так же термины и статьи:

Взрыв

возникновение



© 2025 chem21.info Реклама на сайте