Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты полимеризация

    В качестве эмульгаторов применяются калиевые и натриевые соли природных и синтетических жирных кислот и диспропорционированной канифоли, алкилсульфонат натрия и др. Этими эмульгаторами заменяется некаль (натриевая соль дибутилнафталинсульфокислоты), применяющийся в производстве бутадиеннитриль-ных каучуков. Выбор эмульгатора обусловлен его доступностью, способностью обеспечивать необходимую скорость полимеризации, устойчивостью латекса на всех стадиях технологии производства и способностью биологически разлагаться при очистке сточных вод. Применяемые анионоактивные эмульгаторы не оказывают влияния на микроструктуру каучука. Бутадиен-нитрильный каучук СКН-18, полученный при 30°С с применением некаля, алкилсуль-фоната натрия и калиевого мыла синтетических жирных кислот, имеет одну и ту же микроструктуру транс-1,4-звеньев 60,0—63,8%, г с-1,4-звеньев 26,2—30,2% и 1,2-звеньев 8,0—11% [9]. [c.358]


    В общих чертах эмульсионная полимеризация, вероятно, протекает так, как это впервые представил Гаркинс [66] и как показано па рис. 4. Вначале эмульсионной полимеризации, когда система обычно состоит из мономера, воды, мыла (или другого поверхностно-активного вещества) и водорастворимого инициатора реакции (нанример, персульфата калия), мыло существует главным образом в виде мицеллярного раствора (т. е. небольших грунн анионов жирных кислот, окруженных облаком нейтрализующих катионов), а мономер находится преимущественно в виде мелких капелек, но частично также растворенных в мицеллах мыла. Короче говоря, надо предполагать, что это такая же система, какая обычно получается, когда любая не растворимая в воде органическая жидкость, уравновешивается раствором поверхностно-активного вещества выше критической концентрации образования мицелл [78]. [c.131]

    Имеются указания [272, 311—314] о возможности применения азеотропной ректификации для выделения и очистки стирола. Стирол высокой степени чистоты можно получить путем азеотропной ректификации узких фракций, выделяемых из смесей, образующихся в коксовых печах при производстве водяного газа или при крекинге и риформинге нефтяных масел. В качестве разделяющих агентов могут применяться метиловый эфир этиленгликоля [272, 311—313], метиллактат, этиллактат [311], многоатомные спирты [312], а также жирные кислоты Сг—С4, особенно уксусная [314]. В процессе азеотропной ректификации стирол остается в кубе, а в виде азеотропов отгоняются более насыщенные углеводороды. Во избежание полимеризации стирола процесс проводится под вакуумом. [c.280]

    С мылами жирных кислот полимеризацию обычно проводят при pH = 9,0—10,5. Рекомендуют применять при полимеризации свежеприготовленные растворы мыл, полученные растворением соответствующей кислоты в водном растворе щелочи. [c.112]

    В начале организации промышленного производства дивинил-стирольных латексов делались попытки использовать в качестве товарного тот латекс, который получался в виде промежуточного продукта при производстве дивинил-стирольного каучука (джи-ар-эс). Он получался при соотношении дивинила к стиролу 75 25 в качестве эмульгатора применялась натриевая соль жирной кислоты полимеризация проводилась при 50° до степени превращения мономеров 72—75%. Содержание сухого остатка в латексах составляло 24—30%. Эти латексы обладали существенными недостатками малой прочностью сырого геля и вулканизованных пленок, неудовлетворительной устойчивостью и малой смачивающей способностью (высокое поверхностное натяжение) пленки и другие изделия из них сохли медленно (вследствие малой концентрации и большого содержания эмульгатора). При Этом часто образовывались трещины. Затем начали вырабатывать дивинил-стирольный латекс, по существу, по тому же рецепту, который применялся для получения дивинил-стирольного каучука, но с измененным соотношением дивинила к стиролу (50 50), с повышенной (до 90%) глубиной полимеризации и исключением прерывателя и противостарителя. Повышенное содержание связанного стирола в полимере обусловило более высокую прочность пленок в связи с применением канифольного мыла обеспечивалось лучшее качество пленок, более высокая концентрация полимера, лучшее высыхание пленок и меньшая вероятность их растрескивания. Такой латекс получил широкое применение особенно для пропитки вискозного корда в шинной промышленности. [c.517]


    При промышленном производстве полиметиленоксида в качестве инициаторов анионной полимеризации формальдегида используют амины, фосфины или карбоксилаты - соли жирных кислот. Полимеризация осуществляется в углеводородной среде при 20-60 °С  [c.250]

    При эмульсионной полимеризации стирола эмульгаторами служат соли жирных кислот (мыла) или другие [c.384]

    Благоприятными для скорости полимеризации являются применение мономеров с высокой концентрацией, увеличение количества эмульгатора и молекулярной массы жирной кислоты (до определенного значения), применение активной гидроперекиси, низкое содержание минеральных солей в водной фазе, отсутствие кислорода в системе и др. [c.254]

    Протекающие параллельно реакции деструкции и полимеризации создают всю гамму алифатических, циклических и ароматических углеводородов состава С — tj, которые обычно и образуются при контакте жирных кислот с алюмосиликатами. [c.197]

    Ненасыщенные жирные кислоты с одной двойной связью типа олеиновой также являются очень устойчивыми соединениями. При обычных условиях они не способны к полимеризации. [c.27]

    Из органических коллоидов, которые входят в состав углей, наибольшую адсорбционную способность имеют гуминовые кислоты, а наименьшую —продукты, полученные при полимеризации ненасыщенных жирных кислот. Воски и смолы вообще не адсорбируют водяного пара. Поэтому чистые сапропелиты, содержащие незначительное количество золы, обладают минимальной адсорбционной способностью и содержат очень мало влаги (например, богхеды). В отличие от них чистые гумусовые угли способны адсорбировать значительное количество влаги и в естественном состоянии они сильно обводнены. Угли смешанного происхождения занимают промежуточное положение. [c.92]

    Исследования Добрянского и Казакова по групповому составу различных сапропелей показали, что принципиально они не отличаются от торфов. Остаточный уголь балхашита представляет собой хрупкое светло-коричневое вещество, которое легко растирается в порошок, а при нагревании размягчается, переходит в пластическое состояние и, наконец, спекается. По химическому составу этот остаточный уголь является смесью продуктов полимеризации ненасыщенных жирных кислот. [c.162]

    Полимеризация проводилась в лаборатории следующим образом [14]. В сосуд высокого давления емкостью 1,6 л помещали 500 г воды, 10 г смеси жирных кислот из окисленного парафина (С13—С ), 20 з твердого едкого кали и 20 г персульфата калия при постоянном перемешивании этилен ком-примировали до давления 200 — 600 ат. [c.573]

    Высыхание лаковых пленок из модифицированных глифталевых смол основано на полимеризации благодаря двойным связям, содержащимся в непредельных жирных кислотах. Чем больше непредельность кислот, тем скорость высыхания больше. Наиболее быстро высыхают пленки, содержащие жирные кислоты тунгового масла. [c.222]

    Полимеризация в эмульсии. Это наиболее распространенный промышленный способ получения полимеров. Полимеризацию проводят в жидкой среде (чаще всего в воде), не растворяющей ни мономер, ни полимер. Для стабилизации эмульсии, используют мыла (олеаты, пальмитаты, натриевые соли ароматических и высокомолекулярных жирных кислот), а также поливиниловый спирт, карбоксиметилцеллюлозу и некоторые другие вещества. Этот тип полимеризации обычно инициируют водорастворимыми низкотемпературными инициаторами. Наряду с ними в систему вводят регуляторы — буферные вещества (гидрокарбонаты, фосфаты, ацетаты щелочных металлов) —для поддержания постоянного значения pH среды. При эмульсионной полимеризации продукт образуется в виде мелких гранул. Преимущество этого способа — легкость отвода теплоты и получение продукта с высокой молекулярной массой. Недостаток — необходимость отмывания полимера от стабилизатора. [c.263]

    Первый в мире синтетический каучук, полученный в 1928 г. акад. С. В. Лебедевым, был назван натрийбутадиеновым, так как натрий явился катализатором процесса полимеризации бутадиена. Натрий используют как восстановитель в органическом синтезе, в частности для восстановления жирных кислот в высшие спирты, применяемые в производстве синтетических моющих средств. Высокая теплопроводность натрия и легкость его превращения в жидкость являются причинами,, объясняющими использование этого элемента в качестве теплоносителя для обеспечения равномерного обогрева аппаратов химической промышленности, в атомных реакторах, в клапанах авиационных двигателей, в машинах для литья под давлением. Из сплавов свинца, содержащего 0,58% Ыа, девают подшипнику осей- железнодорожных вагонов, а сплав свинца с 10% Ыа идет иа приготовление антидетонатора моторного топлива — тетраэтилсвинца. Иногда натрием заменяют в электротехнике медь которая в 9 раз тяжелее этого металла шины для больщих токов делают из стальных труб, заполненных натрием. Большую реакционную способность [c.297]


    Нефтеперерабатывающая и нефтехимическая промышленность вырабатывает самые разнообразные продукты газообразное и жидкое топливо, смазочные и специальные масла, консистентные смазки, битумы, сажу, парафин, нефтяные кислоты, кокс, синтетические спирты, синтетические жирные кислоты, продукты полимеризации, ароматические углеводороды, ацетон, фенол и многие другие технические и химические продукты. [c.9]

    Совершенно другие свойства имеют ненасыщенные жирные кислоты с двумя двойными связями H2n-4t)2. Из этих кислот наиболее распространена в растительных маслах линолевая кислота, быстроокисляющаяся кислородом воздуха, а при нагревании легко полимеризующаяся. Процесс полимеризации может привести к образованию димеров, тримеров и полимеров. Принимается, что при полимеризации линолевой кислоты получается следующий димер  [c.27]

    Вторая стадия этерификации фталевым ангидридом проводится прп 200—250°. При этерификации наряду с основным процессом происходят полимеризация эфиров жирных кислот [125], образование простых эфиров [c.721]

    Широкое применение находит синтез нитрилов пропусканием смеси. органической кислоты с аммиаком над дегидратирующими катализаторами. Таким способом в нитрилы перерабатывают жирные кислоты из различных видов сырья последующим гидрированием их превращают в весьма ценные длинноцепочечные амины. Однако в настоящее время эти амины встречают конкуренцию со стороны аналогичных продуктов, получаемых взаимодействием цианистого водорода с алкенами разветвленного строения, вырабатываемыми полимеризацией изобутилена [69]. [c.230]

    В последнее время возникла потребность в быстросохнущих лакокрасочных материалах естественной сушки. Большой скорости высыхания достигают подбором жирных кислот с высоким содержанием сопряженного изомера (45%), отличающихся высокой активностью при окислительной полимеризации, или жирных кислот с большим содержанием ненасыщенных двойных связей. Ускорить высыхание можно также снижением жирности смол до 25—40%. Получение таких тощих смол возможно только при использовании монофункционального модификатора (например, бензойной кислоты и ее гомологов), при введении которого снижается функциональность реакционной смеси. По- [c.45]

    При отсутствии скелетных форм качественный состав ОВ, а следовательно, и нефтей определяется степенью окисленности исходной биомассы. При слабом окислении предполагается участие в формировании части белково-углеводного комплекса и наличие активного процесса осернения ОВ в диагенезе. В этих условиях также хорошо сохраняются от окисления полиненасыщенные жирные кислоты, циклизация и полимеризация которых способствуют образованию нафтеновых и аромати- [c.68]

    Отсутствуют доказательства того, что давление, существующее в нефтепроизводящих свитах, оказывает влияние на образование нефти. В старой теории происхождения нефти, основанной иа представлении о термическом разложении растительных и животных жиров, а также жирных кислот, первоначально предложенной Уорреном и Сторером [59] и позднее поддержанной Энглером [21], предполагалось, что образующиеся олефины полимеризуются под действием высокого давления. Однако давление выше 15 ООО ат не вызывает полимеризации даже таких реакционно-способных диеиов, как бутадиен и изопрен [15], несмотря на легкое предварительное окисление кислородом воздуха с образованием перекисей, являющихся весьма эффективными катализаторами. Как будет указано в дальнейшем, полимеризация является одной из хорошо известных реакци , вызываемых кислыми силикатали . [c.85]

    Большое внимание уделяют вопросам образования осадка (в результате окислительных процессов) не только в электроизоляционных, но и в турбинных и автомобильных маслах. Химизм этого явления еще не вполне ясен, но, по-видимому, имеет место полимеризация и конденсация продуктов окисления (таких как оксо-и ненасыщенные спирты, альдегиды, кетоны и кислоты) в малорастворимые соединения. В литературе сообщается, что при окислении образуются гидрооксикислоты нафтенового и жирного рядов [90], а также их ангидриды [91]. Окисление трансформаторных масел в отсутствие или присутствии катализаторов, роль которых могут играть соли металлов и жирных кислот 2 —Сдз [92], или неметаллические детали трансформатора (такие, как лак на обмотках, фарфоровые изоляторы и т. д. [93—96], идет с такой же кинетикой, как и окисление углеводородов в других нефтепродуктах [97—102]. Происходящая цепная реакция в промышленной практике может быть успешно ингибирована добавлением небольших количеств антиокислителей, вследствие чего срок службы [c.566]

    В отличие от карбоксилсодержащих каучуки со сложноэфирными группами могут получаться полимеризацией не только в кислой, но и в слабощелочной среде (предпочтительно при pH < 10), что позволяет использовать такие доступные биодеструктируемые эмульгаторы, как мыла синтетических жирных кислот, обычно в количестве 4 ч. (масс.) на 100 ч. (масс.) основных мономеров. Применяются обычные инициирующие системы — гидроперекись+ + ронгалит + трилоновый комплекс железа (для БЭФ и БСЭФ) и персульфат-4-триэтаноламин (для БНЭФ) при температуре полимеризации 5—10 и 30 °С соответственно. В отличие от других функциональных каучуков (карбоксилсодержащих, метилвинилпи-ридиновых) каучуки со сложноэфирными группами не содержат ионизируемых при коагуляции групп, вследствие чего процесс их выделения идентичен выделению аналогичных каучуков без функциональных групп. [c.406]

    В качестве эмульгаторов наибольшее распространение получили анионоактивные вещества. Г1 зависимости от pH среды применяют соли щелочных металлов, алкилсульфаты и алкилсульфонаты, мыла жирных кислот, Алкилсульфаты образуют стабильные эмул-ьсии мономера в кислой среде, поэтому их можно применять при полимеризации в присутствии окислительно-восстановительных систем. Стабильность эмульсии повышается также при применении смеси различных эмульгаторов и последовательного введения их в зону реакции. [c.26]

    Как противонагарные присадки к топливам можно применять продукты полимеризации эфира алифатического спирта Са—С18 и двухосновной кислоты С4—Се с сопряженными двойными связями, а также сополимеры винилового эфира жирной кислоты Сг— 4 и Ы-виниламина. В частности, добавка 0,005—0,2 % (масс.) продукта сополимеризации лаурилфумарата, винилацетата и Н-ви-нилпирролидона улучшает противонагарные свойства бензинов и снижает лако- и осадкообразование при работе двигателей [307 пат. ФРГ 1101854]. Отметим еще сополимеры алкилакрилата (или метакрилата) и Ы-винилпирролидона, которые добавляют к топливам в количестве 0,001—0,2% (масс.) [пат. США 3015546]. [c.272]

    Органическое вещество отмерших организмов фито- и зоопланктона, а также и более организованных форм в водной толще и в донных илах испытывает интенсивные преобразования. Интенсивная микробиологическая деятельность сопровождается распадом первичного субстрата и образованием бактериальной биомассы. В результате содержаниг белковоподобных соединений уменьшается в 100—200 раз, свобод ных аминокислот в 10—20 раз, углеводов в 12—20 раз, липидов в 4—8 раз. Одновременно с этим соверншются процессы поликондеисации, полимеризации непредельных соединений и др. Возника от несвойственные биологическим системам вещества, составляющие основу органической части нефти—керогена. Происходит полимеризация жирных кислот, гидроксикислот и непредельных соединений с переходом образующихся продуктов уплотнения в нерастворимые циклическую и [c.32]

    Образование высокомолекулярных аренов происходит уже после отмирания организмов — в водной голи е и илах. Источником их являются полиеиовые соединения типа каротиноидов. Частично полициклические системы образуются и из стероидных соединений. Однако основная масса аренов, как и других углеводородов, образуется в главной фазе нефтеобразования при термической и термокаталнтической деструкции сапропелевого органического вещества. Химическую основу процесса составляют реакции полимеризации непредельных жирных кислот и других непредельных соединений, о чем свидетельствуют наблюдения в природной обстановке и опыты по лабораторному моделированию этих реакций. Например, в опытах по термокатализу жирных кислот и термолизу керогена сланцев при низких температурах образуется смесь углеводородов, в которой содержатся различные арены в количестве от 15 до 40% (масс.) при этом идентифицированы все классы аренов, входящих в состав битумоидов и нефтей. [c.43]

    Показано, что путем катионной полимеризации винилалкиловых эфиров могут быть получены олигоиеры с различной вязкостью. Эти олигоиеры имеют хорошие вязкостно- и низкотемпературные характеристики, высокую термоокислительную стабильность и смазывающие свойства. Добавление олигоиеров винилалкилового эфира к эфиру пентаэритрита и синтетических жирных кислот приводит к улучшению его термоокислительной характеристики. [c.76]

    Известная аналогия между действием алюмосиликатов и хлористого алюминия открывает широкие возможности для различных предположений. Дегидратация этилового спирта иад окисью алюминия при 450° дает в основном этилен, но одновременно образуется небольшое количество гомологов полиметиленовых углеводородов. Пропилен при нагревании до 330—375° под давлением образовал жидкие продукты, все фракции которого, кроме низших, содержали полиметиленовые углеводороды. Подобные же наблюдения известны для изобутилена (450°, давление 47 атм, продолжительность реакции от 0,5 до 4 часов). Из продуктов полимеризации выделен 1,1,3-триметилциклопентан. В этом случае полиметилен образовался не из димера изобутилена, и авторы предположили, что снерва образуется своеобразный циклический димер 1,1,3,3-тет-раметилциклобутан, который распадается на бивалентный радикал, изомеризующийся в другой, способный циклизоваться в поли-метилет[. А. И. Богомолов получил полиметиленовые углеводороды термокатализом жирных кислот при 250° над алюмосиликатами. [c.99]

    Выход дистиллированных жирных кислот составляет около 80%. Кубовый остаток, получаемый после дистилляции (так называемый гудрон), содержит 80—85% жирных кислот и 10—15% нео-мыляемых веществ. При дистилляции кислот, выделенных из соапстоков, содержание неомыляемых веществ в кубовом остатке увеличивается до 40%. Гудроны (также находящие применение как компоненты смазочных материалов) окращены в темный цвет, имеют переменный состав, содержат все вещества, зафязнявщие исходную смесь кислот, а также продукты полимеризации и термического разрущения, образовавшиеся в процессе дистилляции. [c.240]

    Поливиниловые сложные эфиры можно си тезировать как методом полимераналогичного превращения поливинилового спирта, так и непосредственной полимеризацией мономеров. Методом полимераналогичного превращения обычно получают сложные поливиниловые эфиры минеральных или высших жирных кислот. Поливиниловые эфиры низших органических кислот получают непосредственной полимеризациеп соответствующих мономеров. [c.297]

    СНз (СН2),СН = СН (СН2),С00Н и пальмитиновая СНд (СН2)14СООН кислоты. В природных Ж. кроме триглицеридов присутствуют различные примеси свободные жирные кислоты, моно- и диглицериды, фосфатиды, стерины, витамины и др. Известно более 1300 видов Ж- Животные Ж.— твердые вещества (за исключением рыбьего жира), растительные (масла) — жидкие (кроме жира кокосового ореха). В состав животных Ж. входят главным образом насыщенные кислоты — стеариновая и пальмитиновая, в состав растительных — ненасыщенные кислоты. Масла можно превратить в твердые Ж- путем гидрогенизации. Ж- нерастворимы в воде, но могут образовывать с ней стойкие эмульсии. Ж. хорошо растворяются в органических растворителях. Характерной особенностью многих растительных Ж. является способность высыхать с образованием на поверхности, покрытой жиром, твердой эластичной пленки. Высыхание заключается в окислении и полимеризации соответствующих жиров за счет остатков ненасыщенных кислот. При действии на триглицериды водяного пара они омыляются с образованием свободных жирных кислот и глицерина  [c.98]

    Эмульсионный метод полимеризации отличается тем, что процесс проводят в жидкой среде, не растворяющей ни мономер, ни полимер. Такой средой обычно служит вода. Эмульгирование производят механическим способом. Чтобы придать эмульсии достаточную стойкость, в водную фазу вводят эмульгаторы мыла (соли высших жирных кислот), защитные коллои-д г (белковые вещества), твердые гидрофильные порошки. При полимеризации в эмульсии, стабилизированной эмульгаторами типа мыл в присутствии водорастворимого инициатора, цолу-чают мелкодисперсный полимер, образующий стабильный латекс. Эта разновидность эмульсионной полимеризации носит название латексной. [c.201]

    Если радпкал жирной кислоты содержит в своей структуре сопряженные двойные связи, то под влиянием кислорода воздуха в полиэфире будет происходить процесс окислительной полимеризации. Соединение между собой отдельных радикалов жирных кислот за счет раскрытия в них двойных связей приводит к возникновению поперечных связей между отдельными цепями макромолекул. Это сопровождается превращением полиэфира в нерастворимый полимер сетчатой структуры. Повышение температуры, интенсивная циркуляция воздуха и введение в полиэфир перекисей способствуют ускорению окпслительной полимеризации, т. е. высыханию масляно-глифталевого лака. [c.718]

    Процесс высыхания масел заключается в окислительной полимеризации. Все ненасыщенные жирные кислоты р их глицериды окисля- [c.607]

    Широко применяемая модификация процесса полимеризации алкидных смол заключается в добавлении высыхающих на воздухе ненасыщенных жирных кислот или масел к смеси глицерина со фталевым ангидридом. В этом случае аддукт входит в состав полиэфира. Такие полимеры растворимы в углеводородах и сложных эфирах, применяющихся в лакокрасочной промышленности. Алкидные смолы, модифицированные высыхающими маслами, исключительно важны как пленкообразуюшее в покрытиях. [c.348]

    Первый тип ОВ образуется в условиях восстановительной обстановки и отсутствия защитного минерального скелета у планктона (см. рис. 17,а). Эти условия приводят к тому, что большая часть липидной фракции с легким и.с.у. выводится из зоны активного окисления. Основу этой фракции составляют ненасыщенные жирные кислоты, которые в результате реакций полимеризации, циклизации, конденсации дают начало составляющей "протокерогена" с наименьшей долей изотопа [c.63]


Смотреть страницы где упоминается термин Жирные кислоты полимеризация: [c.87]    [c.331]    [c.496]    [c.23]    [c.171]    [c.47]    [c.426]    [c.76]    [c.2]   
Основы технологии органических веществ (1959) -- [ c.460 ]

Основы технологии органических веществ (1959) -- [ c.460 ]

Лакокрасочные покрытия (1968) -- [ c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация кислот



© 2025 chem21.info Реклама на сайте