Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определяемое вещество

    Физический смысл фактора пересчета понять нетрудно, стоит только в формуле (1) принять а = I. Тогда х = Р. Следовательно, фактор пересчета показывает, скольким граммам определяемого вещества (или элемента) соответствует I г весовой формы. [c.156]

    Из приведенных примеров видно, что вычисляемое количество определяемого вещества (или элемента) х выражается произведением двух множителей. Один из них, найденная при анализе масс.) осадка (а), является величиной переменной, зависящей от величины взятой навески. Наоборот, другой множитель, именно отношение молекулярного (атомного) веса определяемого вещества (элемента) к молекулярному весу осадка (весовой формы), от навески не зависит и представляет собой величину постоянную, которую можно вычислить раз навсегда для всех подобных анализов. Ее называют аналитическим множителем или фактором пересчета и обозначают через F. Следовательно [c.155]


    Вычисления при выражениях концентраций через титр по определяемому веществу. При массовых анализах очень удобно выражать концентрацию рабочих растворов не через нормальность или титр, а через так называемый титр по определяемому веществу, так как это значительно упрощает вычисления. [c.226]

    Подобные вычисления нужно делать с необходимой точностью. Так как объемы измеряют бюреткой с точностью до сотых долей миллилитра, причем получаются числа с четырьмя значащими цифрами (папример, 18,76 или 24,60 мл и т. д.), то четыре значащие цифры должны содержать и вычисляемые значения нормальности, титра, количества определяемого вещества и т. д. [c.224]

    Рассмотрим еще несколько примеров вычислений при выражении концентрацией через титр по определяемому веществу. [c.227]

    В некоторых случаях при измельчении может происходить изменение определяемого вещества оно может окисляться или частично терять кристаллизационную воду. Для предупреждения этого рекомендуется измельчение проводить быстро иногда веще-стно измельчают под слоем жидкости, защищающей его от действия воздуха. [c.44]

    По окончании определения необходимо, следовательно, вычислить, какому количеству определяемого вещества отвечает найденное (по разности между постоянными массами тигля с осадком и пустого тигля) количество весовой формы. [c.154]

    Метод колориметрического визуального титрования. Берут два. одинаковых колориметрических цилиндра. В одном из них проводят реакцию с испытуемым раствором, во второй добавляют те же количества всех реагентов, которые были использованы для фотометрической реакции в первом цилиндре. После этого во второй цилиндр из бюретки прибавляют постепенно стандартный раствор определяемого вещества до выравнивания интенсивностей окрасок в обоих цилиндрах. Так как в момент сравнения объем раствора в обоих цилиндрах должен быть одинаковым, в первый цилиндр прибавляют соответствующее количество дистиллированной воды. Момент равенства окрасок соответствует равенству концентраций определяемого вещества в обоих цилиндрах. Зная титр стандартного раствора и объем, израсходованный на титрование, можно рассчитать содержание определяемого вещества в испытуемом растворе. В данном методе не обязательно строгое соблюдение законов поглощения излучений, так как при равенствах окраски, объемов растворов и остальных условий число частиц, обеспечивающих данную окраску в обоих колориметрических цилиндрах, практически должно быть одинаковым. [c.476]

    Конечно, величина F остается постоянной только при условии, если не изменяются ни весовая форма, ни определяемое вещество. [c.155]

    При анализе титрованный раствор реагента помещают в измерительный сосуд, называемый бюреткой (см. рис. 30), и понемногу приливают его к исследуемому раствору , до тех пор, пока тем или иным способом не будет установлено, что затраченное количество реагента эквивалентно количеству определяемого вещества. Эта операция называется титрованием. [c.196]


    Отсчитав по бюретке израсходованный на титрование объем р (Створа реагента и зная его титр, перемножают эти величины и получают израсходованное на реакцию количество реагента (в граммах). Отсюда по уравнению реакции уже нетрудно вычислить количество определяемого вещества в исследуемом растворе, а если известен объем последнего, то и титр раствора .  [c.196]

    Чтобы обеспечить условия соблюдения законов поглощения, важно правильно выбрать реагент для определения веществ и способы приготовления растворов. Если в результате реакции образуется устойчивое комплексное соединение, то разбавление раствора практически не влияет на энергетическое состояние определяемого вещества в растворе. При использовании малоустойчивых комплексных соединений необходимо особое внимание уделять способу приготовления растворов. [c.467]

    Например, применяя данный титрованный раствор для массовых определений какого-либо элемента, целесообразно концентрацию раствора подобрать так, чтобы 1 мл этого раствора С(Ютветствовал точно 0,01 г или 0,001 г и т. д. определяемого вещества. Тогда по затраченному при титровании объему раствора можно непосредственно, без каких бы то ни было вычислений находить весовое количество определяемого вещества в граммах. [c.215]

    Выяснив оптимальные условия образования комплексного соединения, устанавливают область концентраций определяемого вещества, в которой соблюдаются законы поглощения излучений, и строят графики зависимости D = /(С) w D — f(l). [c.482]

    Зная нормальность раствора, очень легко перейти к его титру по определяемому веществу. В данном случае, если нормальность раствора AgNOa равна, например, 0,1100, то I мл его содержит 0,1100/1000 г-экв AgNOa и реагирует с таким же количеством [c.226]

    За последние годы особое развитие получила непрямая кулонометрия, или кулонометрия с генерацией титрующего реагента. При этом методе измеряют число кулонов, израсходованное на окисление (или восстановление) химического соединения, предварительно добавляемого в избытке к раствору и способного количественно реагировать с определяемым веществом. Для этого можно использовать многие реакции, применяемые в практике обычного объемного анализа. [c.286]

    В самой ранней работе были опубликованы результаты анализа, проводившегося на стеклянных пластинках с нанесенным на них тонким слоем кизельгура. Растворителем для элюирования служила смесь хлороформа и ацетона (94 6), проявителем — фторборат п-нитробензолдиазония. Перед проведением анализа пластинки активировали, выдерживая в течение 30 мин при 105 С. Количество примесей определяли, измеряя площадь пятен. Ошибка определения составляет 10 отн. % при концентрации примеси до 5% и 23 отн. % — при концентрации определяемого вещества в смеси менее 1%. [c.188]

    Анализ будет выполняться методом титрования — часто используемым методом определения концентрации или количества веществ в растворах. Этот метод заключается в постепенном добавлении известного количества одного из реагентов к другому до тех пор, пока определяемое вещество не прореагирует полностью. В этот момент происходит изменение цвета или какой-либо другой характеристики. Соотношение реагентов при этом соответствует конечной точке титрования. Зная количество одного из реагентов, можно рассчитать количество другого. [c.274]

    Определяемое вещество Реагент Наблюдаемая качественная реакция [c.240]

    Экспрессные методы являются простыми и оперативными, но по точности уступают лабораторным. Они осуществляются специальными приборами — газоанализаторами многочисленных конструкций, как специализированными для различных веществ, так и относительно универсальными. К числу последних относятся универсальные газоанализаторы типа УГ (УГ-2, УГ-3, ГХ-4 и др.), основанные на измерении длины окрашенной части столбика индикаторного порошка, помещенного в стеклянную трубку и меняющего свой цвет при просасывании через него воздуха, содержащего определяемое вещество (рис, 4.2), Длина окрашенного столбика пропорциональна концентрации определяемого вещества в воздухе и измеряется по шкале градуированной в миллиграммах на кубический метр (мг/м ). Применяя соответствующие индикаторные порошки, заранее помещенные в трубки и меняя время (т. е. объем) просасываемого через прибор испытуемого воздуха, можно втечение 10—15 мин определить [c.48]

    Определяемое вещество (non) Реактив Методика определения Весовая форма осадка [c.281]

    Метод диафрагмирования. Для уравнивания интенсивности потоков излучений, про.ходящих через испытуемый и эталонный рас-тво1)ы, в ряде приборов используются диафрагмы с переменной величиной отверстия. Диафрагма соединена с барабаном, который имеет шкалу, проградуированную в значениях О и Г%. К такому типу относится ряд визуальных (например, фотометр ФМ) и фотоэлектрических приборов отечественного производства. Содержание определяемого вещества находят по калибровочному графику. [c.477]

    Количество определяемого вещества вычисляется в случае прямого титрования fio формуле [c.303]

    Такнм образом, при вычислении результатов анализов по методу отдельных наиесок можно находить количество определяемого элемента, либо подсчитав сначала количество затраченных на титрование грамм-эквивалентов рабочего рас-твира и умножив его на грамм-эквивалент определяемого вещества, либо пере-сч 1тав нормальность рабочего раствора на титр его по определяемому веществу и МНОЖИВ этот титр на затраченный объем рабочего раствора. Оба способа едина ОБО удобны и приводят к одному и тому же выражению для нахождения Q. [c.228]


    Э — эквивалентный вес определяемого вещества, равный молекулярному весу вещества, деленному на приведенное в таблицах значение Ai/Э. [c.303]

    Иногда концентрацию рабочего раствора обозначают не через нормальность, а через титр (весовое количество растворенного вещества а в I мл раствора) или через титр по апосделяемому пеществу Т д (весовое количество определяемого вещества q, эквивалентное 1 мл раствора а). В этих случаях в приведенные выше формулы вместо произ- [c.303]

    Удобство такого способа вычислений при массовых анализах, когдл, вычислив один раз титр рабочего раствора г о определяемому веществу, находят количество этого вещества простым умножением титра на израсходованный объем раствора. Очевидно. Такой способ широко применяется в лабораториях, где приходится иметь дело С массовыми определениями одного и того, же элемента в большом количестве проб. Наоборот, в тех случаях, когда определения не носят массового характера и данный титрованный раствор применяется для определения не одного и того же, а различных элементов, вычислять результаты анализов удобнее, исходя из нормальности раствора. [c.227]

    Вычисление. Вычисление проводят, пользуясь выражением концентрации через титр по определяемому веществу. Прежде всего вычисляют, чему равен титр перманганата по железу, т. е. сколько граммов Ре + может окислить перманганат, содержащийся в 1 мл данного раствора. Если нормальность КМПО4 равна 0,02025, то в мл его содержится 0,02025 1000 г-экв КМПО4 при реакции окисляется столько же грамм-эквивалентов Ре. Так как грамм-эквивалент железа равен 55,85 г то  [c.386]

    Возможность непосредственного измерения величин D и Т при услов1и соблюдения законов поглощения позволяет использовать следующие пути расчета концентрации определяемого вещества. [c.465]

    По калибровочному графику D = f( ), построенному на основ,1НИИ измерений значений оптических плотностей ряда эталонных растворов (Da,i) с известной концентрацией ( a,i) опре-деляе, 10Г0 вещества (см. рис. 69,6). Для получения более точных результатов при построении калибровочного графика используют метод наименьших квадратов. Определив значение оптической плотности исследуемого раствора в аналогичных условиях, можно Hai iTH Сх определяемого вещества по калибровочному графику. Следует иметь в виду, что и в случае несоблюдения закона Бугера— Ламберта — Бера можно пользоваться криволинейным калибровочным графиком, если значения D воспроизводимы. [c.465]

    При проведении фотометрической реакции, необходимой для повышения чувствительности, определяемый компонент переводят в соединение, обладающее значительным поглощением. Чаще всего определяемое вещество связывают в комплексное соединение с различными органическими реагентами. Кроме того, могут быть использованы реакции окисления — восстановления, диазосочетания и доугие. [c.480]

    При электроанализе определяют массу осадка, образовавшегося на электроде в результате протекания количества электричества, достаточного для полного, илн практически полного, выделения данного вещества. Образование осадка может происходить ири этом на катоде (разряд металлических ионов с выделением металла) илн на аноде (разряд анионов с образованием соответствующих солей или оксидов). Если химический состав осадка известен, нетрудно по его массе рассчитать содержание определяемого вещества в исходном растворе. Так как количество электричества, пошедшее на получение осадка, не входит в последующие расчеты, то при электроанализе выход по току определяемого вещества необязательно должен равняться 100%. Част(. тока может пойти на другие электродные реакции при том условии, что они пе изменят состава осадка и не нарушат его компактности и прочности сцепленит с электродом. С этой точки зрения можно допустить расход некоторой доли тока на выделение водорода или кислорода. Необходимо, однако, иметь в виду, что чем меньиге выход по току определяемого вещества, тем больше придется затратить времени на анализ. [c.284]

    Кулонометрическое титрование в аппаратурном оформлении сложнее, чем титрование с индикаторами или потенциометрическое титрование. Поэтому кулонометрия не находит щирокс-го применения в практике обычного химического анализа. Однако она используется в тех случаях, когда бывает необходимо определить микроколичества растворенных веществ, а также при проведении автоматического титрования. Приготовлен. и использование очень разбавленных титрованных растворов для объемного определения малых количеств растворенных веществ связано со значительными ошибками и неудобствами в работе. При кулонометрическом титровании необходимость применения таких титрованных растворов отпадает, так как определяемое вещество либо подвергается превращению непосредственно на электроде, J ибo титруется реагентом, генерируемым на одном из электродов в самой анализируемой пробе. В каждом из этих двух случаев определение ведется по израсходованному количеству электричества, измерение которого даже в малых дозах можно проводить с большой точностью. [c.286]

    Все методы анализа ароматических углеводородов можно разделить по суш,еству на физические и химические, а принципиально— на прямые и косвенные, т. е. можпо определять количество бензина н по разности — исследуемый углеводород (косвенный метод) и количество самого углеводорода (прямой метод). В обоих случаях все ошибки анализа ложатся на определяемое вещество поэтому рациональнее прямой метод, так как тогда уменьшается ошибка. I соясалению, все методы достаточно грубы и не дают, за редкими исключениями, хоть сколько-нибудь точных цифр. Эти методы раз-б1фаются далее, после обзора физических и химических свойств отдельных ароматических углеводородов легкого масла. [c.404]

    В таблице приведены методы весового определения важнейших неоргапических веществ (иопов). В первой графе указаны определяемые вещества (ноны) во второй — реактивы, применяемые для определения данного вещества в третьей — методика определения , в четвертой — формулы взвешиваемых веществ ( весовая форма осадка ). [c.279]

    Здесь / — содержание определяемого компонента в анализируемом веществе (в %). а — весовое количество осядка (в г или мг), т — навеска анализируемого вещества (в тех же единицах, что и а), / - стехиометрический множитель (фактор), М] — молекулярный или атомный вес определяемого вещества, — молекулярный или атомный вес взвешенного вещества, п — число молекул или атомов определяемого вещества, соответствующее одной молекуле или одному атому вещества осадка. [c.279]


Смотреть страницы где упоминается термин Определяемое вещество: [c.48]    [c.154]    [c.155]    [c.156]    [c.465]    [c.315]    [c.37]    [c.37]    [c.375]    [c.400]    [c.515]    [c.315]   
Основы аналитической химии Издание 3 (1971) -- [ c.38 ]




ПОИСК







© 2025 chem21.info Реклама на сайте