Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель магниевых сплавах

    Летучесть — 0,76 мг/м . Защищает от коррозии изделия из стали, алюминия, его сплавов, никеля, хрома, кобальта, а также из стали фосфатированной и оксидированной. На меди и ее сплавах образует окисную пленку. Не защищает и в ряде случаев вызывает коррозию изделий из цинка, кадмия, серебра, магниевых сплавов. Чугун требует дополнительной консервации маслами или смазками. Срок действия ингибитора более 10 лет [c.107]


    Титрование с ксиленоловым оранжевым описано для определения алюминия в сталях [712], в титановых сплавах [1173], ферротитане [63], магниевых сплавах [429], алюминиевой бронзе [260], в сплавах никеля с алюминием [263], в бинарных сплавах алюминия с медью [345], с цирконием [434], железом [345], с титаном [665], в тройных сплавах с цирконием и никелем [295], в бокситах, нефелиновых рудах и концентратах [16, 71, 558, 877], каолине [147, 680], в различных минералах, рудах и горных породах [23, 71, 166, 229, [c.69]

    ЯВЛЯЮТСЯ сплавы, в которые этот металл вводится как легирующая добавка. Кроме бериллиевых бронз, применяются сплавы никеля с 2—4% (масс.) Ве, которые по коррозионной стойкости, прочности и упругости сравнимы с высококачественными нержавеющими сталями, а в некоторых отношениях превосходят их. Они применяются для изготовления пружин и хирургических инструментов. Небольшие добавки бериллия к магниевым сплавам повышают их коррозионную стойкость. Такие сплавы, а также сплавы алюминия с бериллием применяются в авиастроении. Бериллий — один из лучших замедлителей и отражателей нейтронов в высокотемпературных ядерных реакторах. В связи с ценными свойствами бериллия производство его быстро растет. [c.389]

    Отливки цз алюминия и магния чистые и слаболегированные Штамповки (чистые и низколегированные) сталь, алюминий, магний, серебро, никель, вольфрам, титан Неметаллы стекло, фарфор Пластики (полистирол, оргстекло, резина) Отливки алюминиевые и магниевые сплавы, низколегированная сталь, чугун со сфероидальным графитом Штамповки медь, латунь, бронза, металлокерамика [c.278]

    Мухина 3. С. и Володарская Р. С. Методы анализа магниевых сплавов. [Определение кремния, алюминия, меди, марганца, цинка, железа, никеля]. Тр. (Всес. н.-и. ин-т авиац. м-лов ВИАМ ), 1949, 2, с. 21—25. 4869 [c.190]

    Сплавы В95 и АМц испытывали в состоянии поставки, сплав Д16 подвергали анодированию и наполнению горячей водой, сталь 45 была хромированной (толщина слоя хрома 3 мкм с подслоем меди 25 мкм и никеля 10 мкм), цинкование и кадмирование производили на толщину 15 мкм с последующим хроматным пассивированием. Из магниевых сплавов испытывался литейный сплав МЛ5 (оксидированный). Результаты испытаний приведены в табл. 17—19, где сопоставлено влияние контактов в различных атмосферах. [c.120]

    Марганец входит в состав многих сплавов. Сплав манганин состоит из марганца, меди и никеля. Манганиновая проволока с изменением температуры почти не меняет электрическую проводимость, что используется при изготовлении катушек сопротивления. Сплавы меди с марганцем применяют для изготовления турбинных лопаток, а марганцовые бронзы — при производстве пропеллеров. Марганец содержат многие алюминиевые и магниевые сплавы. Гальванические покрытия марганцем применяют для защиты изделий от коррозии. [c.254]


    Богданова В. В. Определение хрома, вольфрама, никеля и кремния в сталях [спектральным методом]. Тр. (Всес. н.-и. ин-т авиац. м-лов (ВИАМ)), 1949, 2, 57—58. 3134 Богданова В. В. Определение церия в магниевых сплавах методом спектрального анализа. Зав. лаб., 1950, 16,-№ 11, с. 1406. [c.131]

    Легирование цинком также приводит к повышению стойкости магниевых сплавов это выражается не столько в увеличении допустимого содержания вредных металлов, сколько в уменьшении скорости коррозии в присутствии вредно действующих количеств железа, меди и никеля. [c.542]

    Металлический бериллий обладает многими замечательными свойствами. Тонкие пластинки бериллия хорошо пропускают рентгеновские лучи и служат незаменимым материалом для изготовления окошек рентгеновских трубок, через которые лучи выходят наружу. Главной областью применения бериллия являются сплавы, в которые этот металл вводится как легирующая добавка. Кроме бериллиевых бронз (см. стр. 572), применяются сплавы никеля с 2—4% Ве, которые по коррозионной стойкости, прочности и упругости сравнимы с высококачественными нержавеющими сталями, а в некоторых отношениях превосходят их. Они применяются для изготовления пружин и хирургических инструментов. Небольшие добавки бериллия к магниевым сплавам повышают их коррозионную стойкость. Такие сплавы, а также сплавы алюминия с бериллием применяются в авиастроении. Бериллий — один из лучших замедлителей и отражателей нейтронов в высокотемпературных ядерных реакторах. В связи с ценными свойствами бериллия производство его быстро растет. [c.609]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]

    Покрытия из этих материалов обладают хорошей адгезией к сталям, алюминий-магниевым сплавам, никелю, хрому, титану, керамике, а также к серебру и платине. Покрытия выдерживают без разрушений вибрацию с ускорением 1—15 g с частотой 10— 2500 Гц, а также 10 термоударов от —60 до +650° С и обратно со скоростью 300—400° С/мин. [c.129]

    Наиболее устойчив к воздействию фтора никель и сплавы на его основе. Например, так называемый мо-нель-металл до 550 °С успешно противостоит атакам фтора. Легированная сталь имеет различные пределы устойчивости, а нелегированная может использоваться при нагревании не выше двухсот градусов, причем стойкость углеродистых сталей прямо зависит от содержания углерода в них, и чем его больше, тем сталь менее устойчива к воздействиям фтора. В условиях нагрева не выше 400 и 250 °С можно применять, соответственно, алюминий и медь. Сплав последней с бериллием (берил-лиевая бронза) не разрушается фтором вплоть до 200-300 °С. При сравнительно высоких температурах разрушающему действию не подвержен и магниевый сплав. [c.54]

    Паттисон и Дегеринг [16] приготовили скелетный катализатор из никель-магниевого сплава, растворяя последний в уксусной кислоте. Катализатор оказался по активности аналогичным катализатору 1 -4 Павлика и Адкинса [10] и в два раза более активным, чем катализатор W-2 Мозинго [9]. [c.110]

    Отдельную группу катализаторов составляют скелетные металлические катализаторы, из которых наиболее известен скелетный никелевый катализатор, или никель Ренея. Общий принцип получения таких катализаторов заключается в вымывании из двухкомпонентного сплава подходящим реактивом неактивного компонента. Так, никель Ренея чаще всего получают выщелачиванием алюминия из измельченного никель-алюминиевого сплава (30-50 % N1) 20-40 %-ным раствором гидроксида натрия. Вместо алюминиевого сплава никеля можно использовать кремниевый, магниевый или цинковый. [c.21]

    Даже у эффективных магниевых сплавов и при благоприятных условиях значения не превышают 0,55—0,65. Причиной большой доли собственной коррозии является выделение водорода, образующегося по катодной параллельной реакции согласно уравнению (7.56), или же развитие свободной коррозии частиц, отделенных от протектора при сильно трещиноватой его поверхности (см. раздел 7.1.1 [2—4, 19— 21]). Магниевые протекторы изготовляют в основном из сплавов. Содержание железа и никеля не должно превышать 0,003 %, так как при этом их свойства ухудшаются. Влияние меди не является однозначным. Верхним пределом ее содержания считается 0,02 %. При добавке марганца железо выпадает из расплава и при затвердевании становится безвредным ввиду образования кристаллов железа с оболочкой из марганца. Кроме того, марганец повышает токоотдачу (выход по току) в хлоридсодержащих средах. Содержание марганца должно быть не менее 0,15 %. Алюминий облегчает удаление вредного железа благодаря выпадению вместе с марганцем. Впрочем, чувствительность к повышенным содержаниям железа (более 0,003 %) в присутствии алюминия заметно повышается. При добавке цинка коррозионное разъедание становится более равномерным, к тому же снижается чувствительность к другим загрязнениям. Важнейшим магниевым протекторным сплавом является сплав А2 63, который удовлетворяет также и требованиям стандарта военного ведомства США М1Ь-А-21412 А [22]. [c.186]


    В зависимости от состава электролита корпус ванны выполняют из монель-металла, магниевого сплава, хромоникелевой стали, никеля и его сплавов или стали. Катоды для гидрофторидных ванн делают из меди или магниевого сплава (Mg+2% Мп), а для три-фторидных — из мягкой стали. Аноды изготавливают из угольных или графитовых блоков, которые размещаются в колоколах-диаф-рагмах. [c.269]

    Были испытаны и другие катализаторы, например хромоникелевая сталь (18% хрома, 8% никеля), нихром, феррохром, кон-стантан. Маиганин-никель-медь-магниевый сплав давал 19,56% ванилина при обработке 33 мл отработанного сульфитного ще- [c.626]

    Диэтилдитиофосфат никеля [(G2H50)2PЗЗ]2Ni осаждает кадмий из кислой среды. А1, Се, Zn, Zг и некоторые другие металлы определению не мешают. Реакция применена для определения до 0,05% С(1 в магниевых сплавах [55 325, стр. 20]. [c.56]

    Методы испытаний необходимо разрабатавать и выбирать для каждой группы сплавов в отдельдости. Так, согласно ГОСТ 9020—74 магниевые сплавы испытывают во влажной камере или при полном погружении в 0,001- и 3 %-ные растворы хлористого натрия. Алюминиевые сплавы рекомендуется испытывать при полном погружении в 3 %-ный раствор хлористого натрия, содержащий 0,1 % Н2О2, при переменном погружении в 3%-ный раствор хлористого натрия, в камере соляного тумана или просто во Влажной камере при повышенной температуре и периодической конденсации влаги. Не может быть единого метода испытания для всех сплавов и тем более единых коэффициентов пересчета результатов лабораторных испытаний на длительную эксплуатацию, так как данные коррозионная среда и вид испытаний не в одинаковой степени ускоряют процесс коррозии различных металлов. Периодическая конденсация влаги увеличивает коррозию цинка и стали, а коррозию никеля ускоряет незначительно (если атмосфера не содержит промышленных загрязнений). Железо и его сплавы, как и сплавы алюминия с медью, весьма чувствительны к периодическому смачиванию электролитами, коррозия же кадмия и чистого алюминия при этом ускоряется в меньшей степени. [c.7]

    Обычно диноды электронного умножителя изготавливаются либо из 2%-ного медно-бериллиевого сплава [1255], либо 2%-ного серебфяно-магниевого сплава [934] наряду с указанными используются 4 % -ные сплавы, а также сплавы никеля [1176, 1177] и другие материалы [1309]. Перед использованием электроды проходят специальную обработку для увеличения чувствительности. Коллат [ 1150] показал, что бериллиевые поверхности могут быть активированы [c.216]

    Как было указано, присутствие никеля (МдгЫ ) в магниевом сплаве катализирует реакцию между магнием и водородом до такой степени, которая позволяет рассматривать гидрид магния как средство хранения водорода. Примерно 5 % никеля в магниевом сплаве достаточно для того, чтобы эффективно катализировать реакцию. Если содержание никеля повышалось до 10 % (значение, рекомендованное для практического использования), содержание водорода в твердом теле было бы 6,94 /о, что только незначительно ниже, чем в чистом гидриде магния [194]. [c.480]

    Предложен метод колориметрического определения никеля в сталях и магниевых сплавах 1 обавлением а-фурилдиоксима и извлечением полученного соединения 1,2-дихлорбензолом . [c.468]

    При выборе покрытия для катодного металла который предполагается законтактировать с магниевым сплавом, предпочтение следует отдать цинку. При контактировании алюминиевых сплавов и трехслойного покрытия по железу с оцинкованной сталью последняя оказывается анодом. По степени увеличения коррозии оцинкованной стали на первом месте стоит трехслойное покрытие по железу (железо-медь-никель-хром), на втором — анодированный сплав Д16 и на последнем — сплав АМц. [c.120]

    В настоящее время наиболее широкие области применения иттрия, его соединений, сплавов и лигатур в промышленности следующие производство легированной стали модифицирование чугуна производство сплавов на основе никеля, хрома, молибдена и других металлов — для повышения жаростойкости и жаропрочности выплавка ванадия, тантала, вольфрама и молибдена и сплавов на их основе — для увеличения пластичности производство медных, титановых, алюминиевых и магниевых сплавов атомная энергетика электроника — в качестве катодных материалов (оксиды иттрия), а также для поглощения газов в электровакуумных приборах изготонление квантовых генераторов — лазеров производство тугоплавких и огнеупорных материалов химия —в качестве катализаторов производство стекла и керамики. Рафинирование металлов и сплавов от примесей (кислород, азот, водород и углерод), вызывающих хрупкость сплавов, что особенно важно для тугоплавких хладноломких металлов с объемноцентрированной кубической решеткой, а также примесей, вызывающих хладноломкость (сера, фосфор, мышьяк в [c.195]

    МоЫ те1423 рекомендовано для обработки изделий из алюминия, магния и магниевых сплавов, меди, латуни и бронзы, сталей и чугунов с твердостью по Бриннелю вплоть до 200. Масло рекомендовано к применению на операциях по обработке изделий из труднообрабатываемых сплавов цветных металлов, например, силикон-медь, силикон-бронза и медь-никель. Является очень эффективным смазочным материалом для смазочной системы станков, эксплуатируемых в широком диапазоне температур. [c.140]

    В природе никель встречается в сочетании с мышьяком, сурьмой и серой, как в минерале миллерите NiS, а также в виде гарниерита— никель-магниевого силиката переменного состава. Никель в сплавах с железом обнаруживают в метеоритах полагают, что он в значительных количествах входит в состав земного ядра. Общая схема получения никеля включает первоначальный обжиг руд до NiO с последующим восстановлением оксида до металла с помощью углерода. Никель обычно очищают электролитическим переосаждением, но особо чистый металл по-прежцему получают с помощью карбонильного процесса. Оксид углерода реагирует с неочищенным никелем при 50 °С и нормальном давлении или с медно-никелевым штейном при более жестких условиях. При этом [c.478]

    Получение и использование. Богатых литием руд не встречается. Наибольший интерес представляют амблигонит LiAl(P04)F, три-филин (Li, Na) (Fe, Mn)P04, сподумен Li, A SiaOe) и некоторые другие природные соединения. Обычно он сопутствует калию и натрию. Промышленное получение лития осуществляют электролизом расплава смеси Li l и КС (хлорид калия добавляют для понижения температуры плавления смеси). Литий довольно широко используют в технике. Небольшие добавки его заметно повышают твердость магниевых сплавов и их устойчивость против коррозии, улучшают свойства свинцовых подшипниковых сплавов. Литий вводят для раскисления меди и при рафинировании серусодержа-щего никеля его способность реагировать с N2 используют для очистки газов от азота. В последнее время литий нашел применение в атомной промышленности из-за большой теплоемкости и теплопроводности он удобен как теплоноситель в ядерных реакторах, а его способность задерживать нейтроны используется при изготовлении защитных стержней реактора. При этом извлекается двойная польза во-первых, эффективное защитное действие, а, во-вторых, по реакции [c.204]

    Проведены широкие исследования по изучению влияния на коррозионную стойкость магния добавок таких металлов, как железо, никель и медь. Агрессивной средой в этих исследованиях служил 3% раствор хлористого натрия. Для присадок этих металлов установлены следующие допустимые количества (при отсутствии примесей других металлов) 0,017% железа, 0,0005% никеля и 0,1% меди. В случае магниевых сплавов эти количества изменяются [99—101а]. [c.541]

    Этот же автор реакомендует ДДТК- а для выделения меди-никеля и цинка из магниевых сплавов с последующим поляро, графическим их определением. По мнению Мухиной, ДДТК-Ка имеет ряд преимуществ перед дитпзоном. Для экстракции она применяла хлороформ. [c.156]

    Экструзию сополимеров хлористого винилидена следует проводить на оборудовании, в котором все нагретые поверхности, контактирующие с полимером, изготовлены из цветных металлов. Железо сильно катализирует дегидрохлорирование, что приводит к коррозии нагретых частей и засорению полимера. Никель, хастеллой Д, дураникель, ксалой 306, стеллит 10, магниевые сплавы — материалы, рекомендованные для изготовления шпеков, прессформ, лопастей дробилок и для футеровки цилиндров. [c.423]

    В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий увеличивает эффективность сплава, улучшает его литейные свойства и повышает механические характеристики, хотя при этом потенциал немного снижается. Цинк облагораживает сплав и повышает эффективность, уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят при плавке сплава для осаждения примесей железа. Кроме того, он позволяет повысить токоотдачу и сделать более отрицательным потенциал протектора. Основными загрязняюш.ими сплав примесями обычно являются железо, медь, никель, кремний, которые увеличивают собственную коррозию протекторов и тем самым снижают срок их службы, Наиболее вредной примесью является никель, Повышение его содержания резко влияет на токоотдачу, Химический состав магниевых и цинковых сплавов, используемых в СССР для изготовления проекторов, приведен в табл. 8.1. [c.278]


Смотреть страницы где упоминается термин Никель магниевых сплавах: [c.609]    [c.212]    [c.352]    [c.80]    [c.80]    [c.111]    [c.635]    [c.722]    [c.216]    [c.27]    [c.243]    [c.153]    [c.142]   
Полярографический анализ (1959) -- [ c.209 , c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Магниевые сплавы

Магниевый ИСМ

Сплавы никеля

Сплавы никеля Jt И h I Сплав



© 2025 chem21.info Реклама на сайте