Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагулянты минеральные

    Книга посвящена очистке природной воды и сточных жидкостей гидролизующимися коагулянтами. Дан систематизированный обзор исследований в этой области. Приведены необходимые сведения по теории коагуляции. Рассмотрены механизм коагуляции и электрокоагуляции минеральных и органических примесей воды, факторы, влияющие на эффективность процесса и качество очищенной воды, методы интенсификации коагуляции, возможность удаления растворенных примесей и микроэлементов, вопросы совмещения коагуляции с другими методами водоподготовки. Дано обоснование расчета оптимальной дозы коагулянта. [c.2]


    Анионные флокулянты, включая полиакриламид, были эффективны только с минеральными коагулянтами. Минеральные коагулянты с ПАА оказались наиболее эффективными при очистке сточных вод от органических загрязнений, характеризуемых ХПК и ВПК, а также фосфатов ПЭИ—при удалении ПАВ, нефтепродуктов, солей тяжелых металлов и красителей. Действие ПЭИ объясняется взаимодействием аминогрупп, флокулянта с кислотными группами ПАВ и нефтепродуктов и способностью ПЭИ к образованию комплексных. соединений с солями тяжелых металлов. [c.191]

    Использование катионных флокулянтов позволяет интенсифицировать все технологические процессы при осветлении мутных вод благодаря их более высокой эффективности по сравнению с минеральными коагулянтами, снизить стоимость обработки, облегчить контроль процесса и т. д. [c.164]

    Наиболее распространенным методом регенерации осадка при использовании минеральных коагулянтов является их кислотная обработка, что позволяет восстановить до 85% коагулянта и сократить объем исходного осадка до 15—18% [28]. На водопроводах Японии практикуют повторное использование сульфата алюминия, полученного из осадка отстойников, после обработки его серной кислотой до pH = 2 [29]. [c.29]

    Наиболее перспективными флокулянтами являются N-заме-щенные полиакриламиды — катионные флокулянты. Выбор последних продиктован относительной легкостью их получения, высокой эффективностью, универсальностью, отсутствием коррозионного воздействия и низкой токсичностью [252]. Внедрение катионных флокулянтов сведет к минимуму или вообще исключит расход неорганических коагулянтов, что, в свою очередь, исключит необходимость применения подщелачивающих реагентов, сократит содержание в очищенной воде минеральных солей и позволит использовать ее без дополнительной обработки в водооборотных системах [253].  [c.263]

    Флокулирующее действие активного ила можно повысить, если подкислить его суспензию до pH 3,0—4,0. Наибольший эффект достигается при одновременном использовании в качестве коагулянта минеральных кислот. [c.53]

    Для очистки производственных сточных вод применяют различные минеральные коагулянты. [c.127]

    В некоторых странах для кондиционирования осадков сточных под применяют высокомолекулярные полиэлектролиты. Выбор pea 1ч нта и его доза устанавливаются пробным кондиционированием. Высокомолекулярные соединения дают высокий эффект обезвоживания осадков при дозах, в сотни раз меньших, чем при использовании минеральных коагулянтов. [c.238]


    Для реагентной обработки обычно применяют коагулянты и флокулянты минерального и органического происхождения. Из минеральных коагулянтов чаще всего применяют соли железа, алюминия и др. Используют также сочетание коагулянтов и реагентов, например хлорного железа с известью. Вместо кристаллического хлорного железа можно применять его раствор, являющийся отходом химических производств  [c.260]

    Основные минеральные коагулянты, используемые при реагентной обработке осадков,— это соли железа, алюминия и известь. Указанные реагенты вводят в обрабатываемый осадок в виде 10 % растворов. Наиболее эффективным является хлорное железо, которое обычно применяют в сочетании с известью. Дозы внесения составляют соответственно 5—8 % и 15—20 % (на сухое вещество обрабатываемого осадка). [c.280]

    Для интенсификации осаждения высокодисперсных взвесей и удаления из сточных вод коллоидных загрязнений применяются различные коагулянты (сульфат алюминия и двухвалентного железа, а также сульфат или хлорид трехвалентного железа). Интенсификация осаждения взвесей, особенно при концентрации их несколько десятков грамм в метре кубическом, в большинстве случаев достигается введением в воду флокулянтов — водорастворимых полимеров цепеобразного строения с полярными концевыми функциональными группами. Среди таких флокулянтов наиболее распространен в СССР полиакриламид. В последнее время начинает применяться активированная кремниевая кислота, получаемая в местах потребления хлорированием растворов силиката натрия либо подкислением их определенным количеством минеральных кислот, а также катионные коагулянты типа ВА-2. Введение в сточную воду коагулянтов требует последующего доведения pH до величины, обеспечивающей полноту гидролиза соли и выпадения гидрата окиси. Для алюминиевого коагулянта и сульфата трехвалентного железа величина pH = 6- 7, для сульфата двухвалентного железа — pH = 8,5-ь 9. [c.30]

    Очистка воды с применением гидролизующихся коагулянтов является следствием нескольких одновременно протекающих процессов хемосорбции, образования малорастворимых комплексов, их полимеризации и кристаллизации, флокуляции, взаимодействия образовавшихся полиядерных формаций с поверхностью дисперсной фазы. Комплекс процессов, протекающих при гидролизе коагулянта, приводит к полимеризации и кристаллизации продуктов гидролиза, образованию малорастворимых коагулянтов, которые обволакивают частицы взвеси и, объединяясь, образуют агрегаты, способные к осаждению. При этом влияние pH на хлопьеобразование сводится к влиянию концентрации ионов Н+ и ОН на состав и структуру продуктов гидролиза. Процесс коагуляции характеризуется не только флокуляционным механизмом, но и электростатическими явлениями, приводящими к снижению заряда минеральных частиц, что обусловлено влиянием катионов АР+ и Ре + и их комплексов. [c.22]

    Величина средней степени очистки сточных вод — 56%, и указанные выше проблемы использования минеральных коагулянтов говорят о необходимости реконструкции сооружений физико-химической очистки. Совершенствование процесса флотации может [c.287]

    В качестве коагулянтов применяют различные минеральные и органические соединения. И. С. Туровский предложил вводить хлорное железо в обрабатываемый осадок на стадии уплотнения, а затем перед механическим обезвоживанием. При этом уплотнение существенно интенсифицируется. Фильтрат, образующийся при вакуум-фильтровании, можно направлять в илоуплотнитель, что улучшает уплотнение и уменьшает вынос взвешенных веществ. Для улучшения уплотнения некоторых видов осадков производственных сточных вод, содержащих плохо оседающие мелкодисперсные частицы, к осадку добавляют активный ил. За рубежом применяется совместное уплотнение сырого осадка из первичных отстойников и активного ила. Через 7—8 ч уплотнения влажность уплотненной смеси составляет 92 %. [c.254]

    Применяемые в настоящее время минеральные коагулянты относительно дефицитны и дороги. Кроме того, их использование вызывает определенные трудности в эксплуатации установок кондиционирования они коррозионны и относительно сложны при транспортировании, хранении, приготовлении и дозировании. [c.261]

    Из наиболее известных методов физико-химической очистки применение получил метод напорной флотации с предварительной обработкой сточных вод минеральными коагулянтами (сернокислый алюминий, хлористый алюминий, оксихлорид алюминия). Одним из наиболее перспективных путей совершенствования метода напорной флотации является замена минеральных коагулянтов на органические высокомолекулярные соединения — водорастворимые катионные полиэлектролиты. Это связано с тем, что полиэлектролиты обеспечивают неизменность солевого состава pH очищаемых стоков, меньшее (в 3-4 раза) количество образующегося пенного продукта, небольшие дозы и более глубокую степень очистки воды. [c.309]


    Общими недостатками вышеперечисленных минеральных реагентов является их дефицитность, высокая стоимость, коррозионность, а. также трудности, возникающие при транспортировке, хранении, приготовлении и дозировании указанных коагулянтов. [c.280]

    Гетерокоагуляцня широко используется в процессах водопод-готовки и очистки сточных вод. В воду добавляют минеральные коагулянты, например, соли алюминия, железа, магния, кальция. Эти соли снижают агрегативную устойчивость системы, и частицы загрязняющих веществ выпадают в осадок. Однако эффективность очистки воды от коллоидных дисперсий определяется не только снижением электростатического барьера, а главным образом, гете-рокоагуляциен. Соли алюминия и железа в результате реакций гидролиза образуют малорастворимые в воде гидроксиды, частицы которых приобретают положительный заряд  [c.345]

    Обычно флокулянты применяют [5—9] в дополнение к минеральным коагулянтам для ускорения процесса хлопьеобразования гидроксидов алюминия и железа, упрочнения хлопьев, увеличения скорости их осаждения, повышения качества очищенной воды. Использование флокулянтов позволяет снизить дозы коагулянтов, повышает плотность и прочность образующихся агрегатов, стабилизирует работу очистных сооружений, повышает их производительность. В ряде случаев флокулянты применяют вместо коагулянтов, так как флокулянты также вызывают агрегацию коллоидных примесей, только по иному механизму. [c.23]

    Нефтяные шламы по составу чрезвычайно разнообразны и представляют собой сложные системы, состоящие из нефтепродуктов, воды и минеральной части (песок, глина, ил и т.д.), соотношение которых колеблется в очень широких пределах. Состав шламов может существенно различаться, т.к. зависит от типа и глубины перерабатываемого сырья (нефти), схем переработки, оборудования, типа коагулянта и др. [c.300]

    В седьмой главе описаны сфера применения минеральных коагулянтов, санитарная эффективность коагуляции и электрокоагуляции как при самостоятельном использовании коагулянтов, так и в сочетании с другими реагентами. [c.5]

    Не подлежит сомнению, что эффективность очистки воды коагулянтами в значительной мере определяется фазово-дисперсной характеристикой примесей и их специфическими адсорбционными свойствами. В соответствии с принятой классификацией взвешенные вещества условно делят на три основные фракции пелитовую (<С 10 мкм), алевритовую (от 10 до 100 мкм) и псаммитовую ( -100 мкм). Для большинства рек существует тесная связь между фракционным и минералогическим составом взвешенных веществ и их общим весовым содержанием. Чем больше взвеси несет река, тем больший процент составляет пелитовая фракция взвеси. В частности, в период паводков доля этой фракции возрастает до 70—80%. Доля пелитовой фракции растет также вниз по течению реки, так как увеличивается концентрация глинистых частиц и уменьшается концентрация кварцевых. В табл. П.З даны сведения по дисперсному и минеральному составу взвесей некоторых рек СССР [20]. [c.46]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    В СССР из высокомолекулярных синтетических флокулян-тов особое место в решении проблем защиты окружающей среды занимает полиакриламид. Его применение позволяет увеличить степень очистки воды, сократить расход материального коагулянта на 25—30% и уменьшить образование пены. Полиакриламид можно использовать в сочетании с минеральными коагулянтами. [c.263]

    Миколина В. Я. и др. В кн. Технология синтетических минеральных наполнителей, адсорбентов и коагулянтов. Том 21. Л., Химия , 1970, с. 52—60. [c.257]

    Его применяют в ннде добавки к воде, обработанной минеральным коагулянтом. При очистке мутных вод, содержащих грубодиспсрсныс ве-н естпа, ПАА применяют без минерального коагулянта или вводят его перед коагулянтом. Время введения П. А определяется опытным нутем. Эффективные дозы полиакриламида зависят от способа его применения, качества обрабатываемой воды, типов и параметров очистных сооружений. [c.147]

    Из солей железа наибольшее применение нашли 1) железный купорос FeS04 7HoO для борьбы с вредителями растений, приготовления минеральных красок и т. д., 2) хлорид железа (1П)РеС1з как коагулянт при очистке воды, а также как протрава при крашении тканей 3) сульфат железа (1И)Ре2(504)з-ЭНаО как коагулянт, а также для травления металлов 4) Ре(ЫОз)з-ЭНаО как протрава при крашении хлопчатобумажных тканей и утяжелитель шелка. [c.211]

    Примером комплексного использования большинства составляющих компонентов минерального сырья является начатая в химической промышленности переработка нефелиновых руд Кольского полуострова. Она предусматривает получение апатитового, нефелинового, титаномагниевого и сфенового концентратов и их последующую переработку в фосфорные и бесхлор-ные калийные удобрения, глинозем, кальцинированную соду, поташ, коагулянты, фтористые соли, портланд-цемент, извлечение диоксида титана и соединений редких металлов. Более полный перечень полезных продуктов, получаемых при комплексной переработке апатит-нефелиновых руд, приведен на рис. 3.34. [c.257]

    Удаление продукта реакции (Н2804), тормозящего гидролиз коагулянта Сорбция на поверхности заряженных хлопьев гидроокиси алюминия или железа коллоидных органических и минеральных примесей, несущих заряд, противоположный по знаку Осаждение образовавшихся осадков под действием силы тяжести [c.34]

    По зарубежным данным, для кондиционирования осадков хорошие результаты дает комбинированное применение минеральных коагулянтов и синтетических флокулянтов перед подачей осадка на фильтр-пресс с дозой по сухсзму веществу флокулянта 0,001—0,5% коагулянтов, (хлорида железа, сульфата желе за и др.) 0,5—10%. При обезвоживании на фильтр-прессе влажность осадка составляет 37—64 %. [c.261]

    Реагентная обработка — наиболее известный и распрсктраненный способ кондиционирования. Практически все осадки сточйых вод, за небольшим исключением, могут быть обезвожены указанным способом. При реагентной обработке происходит коагуляция — процесс агрегации тонкодисперсных и коллоидных частиц, образование крупных хлопьев с разрывом сольватных оболочек и изменением форм связи воды, что приводит к изменению с-фуктуры осадка и улучшению его водоотдающих свойств. Для проведения реагентной обработки используют минеральные и органические соединения — коагулянты и флокулянты. [c.280]

    Хорошие результаты при кондиционировании осадков дает комбинированное применение минеральных коагулянтов и синтетических флокулянтов. Так, в соответствии с одним из Британских патентов введение в осадок перед фильтрованием флокулянта в количестве 0,001—0,5 % по сухому веществу в срчетании с неорганическими коагулянтами (хлоридом железа, сульфатом железа, сульфатом алюминия и др.) при дозах 0,5—10 % (по сухому веществу осадка) позволяет получить обезвоженный на фильтр-прессах осадок влажностью 37—64 %. [c.282]

    Крупнозернистые пульпы менее вязки, чем тонкозернистые при том же содержании твердого. Присутствие в пульпе очень мелких частиц твердого (менее 10-20 мкм), называемых шламами, сильно изменяет ее вязкость. В этом отношении особое значение имеют первичные шламы, т. е. мелкие минеральные глинистые частицы, присутствующие в некоторых рудах и освобождающиеся при мокром измельчении. Незначительное количество первичных пшамов может заметно повысить вязкость пульпы и ее устойчивость к расслоению. Мелкие частицы кристаллического строения, образованные из минералов при измельчении, не оказывают такого сильного влияния на вязкость пульпы. Добавкой химических веществ можно изменить вязкость пульпы и ее устойчивость. Для повышения устойчивости в пульпу добавляют вещества, называемые стабилизаторами. Часто для этой цели служит жидкое стекло. Добавка в пульпу коагулянтов, например извести, в некоторых случаях наоборот, вызывая слипание мелких частиц, ускоряет расслоение пульпы. С повышением температуры вязкость пульпы уменьшается. [c.792]

    Применение катионного флокулянта сводит к минимуму (до 10 20 мг/л) или вовсе исключает расход минеральных коагулянтов, что приводит к сокращению в 4-5 раз количества пены, образу1>-цвйся при очистке флотацией сточных, вод Ю, 3. [c.115]

    Общее количество способных к обдюну катионов, приходящееся на 100 г минерала, называется его катионообменной емкостью (Ек) и выражается в мг-экв/100 г. Катионообменная емкость взвесей, содержащихся в обрабатываемой воде, влияет на расход коагулянта и является важным показателем технологических свойств воды. Значения Е , определенные для некоторых минеральных веществ, приведены в табл. II.5. [c.49]


Смотреть страницы где упоминается термин Коагулянты минеральные: [c.481]    [c.76]    [c.15]    [c.185]    [c.95]    [c.261]    [c.242]    [c.242]    [c.242]    [c.55]    [c.496]    [c.115]   
Очистка сточных вод в химической промышленности (1977) -- [ c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция минеральными коагулянтами

Минеральные, коагулянты, применяемые для очистки

Удаление эмульгированных минеральных масел из сточных вод при помощи коагулянтов



© 2024 chem21.info Реклама на сайте