Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осадок I разделение катионов IV аналитической группы

    Фосфат-ионы образуют осадки с катионами третьей аналитической группы, а также с катионами магния и щелочноземельных металлов. Следовательно, присутствие фосфатов затрудняет разделение катионов второй и третьей аналитических групп и их необходимо удалить. Большие преимущества перед химическими методами отделения фосфатных ионов от катионов имеет ионный обмен на анионите (например, на смоле ЭДЭ-ЮП) в С1-форме. [c.140]


    На чем основано разделение гидроксидов катионов V и VI аналитических групп (кислотно-основная классификация) Указать состав раствора и осадка, образующихся при разделении смеси катионов V и VI аналитических групп. [c.29]

    На чем основано разделение катионов IV и V аналитических групп (кислотно-основная классификация) Каков состав раствора и осадка Написать уравнения реакций. [c.29]

    Гидроокиси меди и кадмия и окись серебра растворяются в избытке раствора аммиака с образованием аммиакатов [Си(ЫНз)4] — интенсивного синего цвета, остальные — бесцветны. Реакции катионов IV аналитической группы с N1 40 широко используют в систематическом ходе анализа катионов. Например а) для открытия ионов меди по характерному синему окрашиванию комплексных ионов [ u(NHз)4) б) для открытия ионов висмута (по образованию белого осадка основной соли висмута) в присутствии кадмия и меди, гидроокиси которых растворимы в избытке NH40H в) для разделения хлоридов серебра и закисной ртути, осаждаемых совместно соляной кислотой, с последующим растворением хлорида серебра в NH40H. [c.312]

    Так, например, в ходе систематического анализа смеси катионов II и III аналитических групп, при разделении катионов этих групп сульфидом аммония в аммиачной среде, при подщелачивании раствора выпадают фосфаты щелочноземельных металлов. Это может привести к потере катионов II аналитической группы, которые выпадут в виде фосфатов вместе с осадком сульфидов металлов 1П группы. О разделении катионов 1, II и III групп в присутствии фосфатов см. стр. 427. [c.136]

    Катионы, вследствие значительного химического сходства между многими из них, подвергают систематическому анализу с предварительным разделением на аналитические группы, включающие более сходные элементы (см. 5, стр. 61). Осадки соединений катионов отдельных групп подвергают дальнейшей обработке, посредством которой отделяют друг от друга катионы данной группы. Присутствие каждого катиона устанавливают, наконец, особой, только для него характерной реакцией. [c.236]

    Разделение фосфатов II группы на подгруппы. Осадок 3 при нагревании обрабатывают 2 н. раствором уксусной кислоты. В осадке остаются фосфаты второй подгруппы, в раствор переходят катионы первой подгруппы второй аналитической группы и следы РЬ -ионов. [c.99]


    Не утратили практического значения классические методы, основанные на различной растворимости сульфидов или гидроокисей. металлов, хотя эти. методы пригодны главным образом для группового разделения. Кобальт находится в И1 аналитической группе катионов. Осаждение с сероводородом в кислой среде позволяет отделять катионы IV и V групп от кобальта. Сульфид аммония применяется для отделения кобальта совместно с другими катионами П1 группы от щелочных и щелочно-зе.мельных. металлов. Воз.можны также разделения внутри П1 группы, если тщательно регулировать кислотность раствора в процессе осаждения. Известны, например, методы осаждения цинка сероводородом в присутствии кобальта в слабокислом растворе, отделения кобальта от марганца и др. Сероводородный метод был усовершенствован Остроумовым, который предложил осаждать сульфиды кобальта (и никеля) из пиридиновых растворов это дает возможность достигнуть более четкого разделения и получить сульфиды в виде хорошо отфильтровываемых плотных кристаллических осадков. [c.60]

    Качественное определение катионов при систематическом ходе анализа состоит в последовательной обработке исследуемого раствора различными групповыми реагентами. Полученные при этом осадки подвергают затем дальнейшей обработке, которая позволяет произвести полное разделение катионов всех аналитических групп. Присутствие каждого катиона затем подтверждается характерными для него реакциями. [c.269]

    Прежде всего следует отметить, что разделение аналитических групп сероводородным методом является недостаточно четким вследствие явлений соосаждения и последующего осаждения. Так, например, уже указывалось, что при стоянии осадка сульфидов IV и V групп в соприкосновении с раствором происходит последующее осаждение сульфида цинка, вследствие чего катион 2п + может быть иногда потерян . Точно так же вместе с катионами IV и V групп могут соосаждаться и катионы III группы, например Ы " , Со " и т. п. [c.438]

    Разделение сульфидов и сернистых соединений, образованных ионами IV и V аналитических групп, путем обработки осадка (NH4)2S приводит к потере значительных количеств катионов меди и ртути. Это затрудняет дальнейшее открытие этих катионов (особенно Си++). [c.432]

    Обнаружение катионов И группы. Окончив анализ раствора, приступают к анализу осадка, полученного при разделении катионов I и II аналитических групп. Для этого необходимо растворить осадок, содержащий предположительно все катионы II группы. [c.26]

    СТИ К изменению какого-либо аналитического свойства в системе (изменение окраски, появление осадка и т. д.), причем по возможности для одного катиона. Вспомогательные реагенты используют для предотвращения образования труднорастворимых соединений, для маскирования и т. д. Для маскирования обычно применяют групповые монодентатные неорганические комплексообразующие реагенты, такие, как р-,, СЫ- В принципе можно оценить степень разделения сравнением констант устойчивости всех комплексов, которые могут быть образованы в данной системе всеми присутствующими катионами со всеми добавленными хелатообразующими реагентами. Однако это не только утомительное и довольно смелое предприятие , но часто практически нереальное из-за отсутствия всех необходимых данных. Поэтому целесообразно сразу же указать на возможность качественной оценки относительной устойчивости различных комплексов в зависимости от природы катиона. Катионы металлов по их способности к комплексообразованию можно разбить на определенные группы [1895, 1918, 1919], для разделения и маскирования которых можно использовать групповые, или общие, реагенты. [c.59]

    Анионы или кислоты, осаждающие большую группу катионов, называют групповыми реактивами. Такими реактивами являются, например, гидроксид щелочного металла NaOH, сероводородная кислота H2S и др. Последовательное применение групповых реактивов позволяет провести количественное разделение сложной смеси катионов на несколько аналитических групп. Применение групповых реактивов упрощает проведение анализа, позволяя разрабатывать универсальные схемы анализа, предусматривающие наличие в пробе самых различных комбинаций элементов. В то же время отсутствие осадка при действии группового реактива говорит об отсутствии в анализируемом растворе целой группы ионов. [c.156]

    Разделение катионов I и II аналитических групп. 15—25 капель анализируемого раствора помещают в коническую пробирку и добавляют несколько капель раствора аммиака до щелочной реакции, а затем по каплям раствор NH4 I до получения раствора с рН =9, Смесь нагревают на водяной бане до 60 — 70°С, добавляют к ней 10—12 капель раствора (NH4)2 03, хорошо перемешивают и полученный осадок с раствором выдерживают на водяной бане в течение 1—2 мин при той же температуре. Осадок центрифугируют, а к раствору, не сливая его с осадка, добавляют одну каплю раствора (NH4).j 0 , для определения полноты осаждения карбонатов второй группы. Появление мути означает, что полнота осаждения не достигнута в этом случае к раствору добавляют 2—3 капли раствора (ЫН4)2СОз, вновь выдерживают на водяной бане и повторно центрифугируют. После достижения полноты осаждения центрифугат осторожно сливают с осадка в отдельную пробирку и сохраняют для анализа катионов первой группы. [c.253]


    Нередко оказывается, что методики, считавшиеся строго количественными, на самом деле отягощены существенными погрешностями. Ценные сведения были получены при изучении условий разделения ионов металлов при помощи сероводорода. Было показано, что все металлы третьей аналитической группы (т. е. образующие при действии сульфида аммония растворимые в кислотах сульфиды) в большей или меньшей степени соосаждаются с сульфидами группы сероводорода при их выделении из 0,3 н. H L Например, кобальт особенно сильно (до 17%) увлекается осадком SnS2, причем степень захвата зависит от количества кобальта в растворе, а также от концентрации кислоты, скорости пропускания сероводорода, продолжительности контакта раствора с осадком, температуры осаждения и др. Проведенное исследование позволило найти условия количественного осаждения катионов. [c.209]

    Среди большого числа серусодержащих органических реагентов для качественного обнаружения и количественного онределения металлов наиболее интересны циклические соединения, содержащие в кольце атомы азота и серы к ним относятся меркан-тобензотиазол, меркаптобензимидазол, висмутол I, висмутол II и т. н. Последние синтезированы Бушем [1, 2] и подробно исследованы как аналитические реагенты Дубским [3, 4]. Оба реагента образуют характерные окрашенные осадки с металлами группы сероводорода и могут быть использованы для обнаружения малых количеств висмута [3, 4], для гравиметрических, тит-риметрических, фотометрических определений и разделения катионов. [c.218]

    Применение ионного обмена в аналитической химии началось уже давно. Но лишь в последнее время ионный обмен получил значительное развитие в связи с появлением многочисленных ионитов, значительно различающихся по своим свойствам. Так, гидратированный алюмосиликатный катионит (реактив Ллойда) широко применяется для удаления аммиака перед определением мочевины [173] и для апалитического разделения аминокислот [58]. Концентрирование растворов микроэлементов на таких катионитах, как алюмосиликаты [1] и фильтровальная бумага [114], широко используется уже на протяжении многих лет. Важное значение в аналитической практике имеет применение методов ионного обмена для изучения природы осадков в весовом анализе [294], при изучении механизма стеклянного электрода [145] и для выяснения источников ошибох при измерениях со стеклянным электродом в разбавленных небуферных растворах [145]. Ионным обменом объясняют также изменения, возникающие при хранении весьма разбавленных растворов в стеклянной посуд [26, 28, 478]. Эти применения имели, однако, в аналитической химии весьма небольшое значение по сравнению с их применением в настоящее время. Синтез ряда ионообменных смол, содержащих различные функциона,льные группы и в некоторых случаях отличающихся высоко чистотой ( для анализа ), значительно способствовал широкому примепепию иоп1 тов в аналитической химии. [c.120]


Смотреть страницы где упоминается термин Осадок I разделение катионов IV аналитической группы: [c.341]    [c.381]    [c.312]    [c.266]   
Судебная химия (1959) -- [ c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение на группы



© 2025 chem21.info Реклама на сайте