Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюконеогенез при голодании

    Важнейшей функцией глюконеогенеза является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Постоянное поступление глюкозы в каче- [c.150]

    Крупномасштабные изменения, влияющие на метаболизм всей клетки, могут быть достигнуты регуляцией ключевых ферментов. Например, особая схема регуляции по принципу обратной связи позволяет клетке переключаться с расщепления глюкозы на ее биосинтез, или глюконеогенез. Потребность в таком обращении метаболического пути бывает особенно острой как в периоды напряженных тренировок, когда необходимая для мышечного сокращения глюкоза синтезируется в клетках печени, так и во время голодания, при котором глюкоза для выживания организма должна образовываться из жирных кислот и аминокислот. Обычный распад глюкозы до пирувата в процессе гликолиза катализируется несколькими различными последовательно действующими ферментами. Большинство реакций, катализируемых этими ферментами, легко обращается, однако три из них (стадии 1, 3 и 9 ш. рис. 2-20) фактически необратимы. На самом деле процесс расщепления глюкозы [c.107]


    Аминокислоты и глицерин используются для синтеза глюкозы главным образом при голодании или при низком содержании углеводов в рационе (углеводное голодание). В этих условиях глюконеогенез служит для обеспечения глюкозой мозга, в то время как другие органы обеспечиваются энергией за счет окисления жирных кислот. [c.266]

    Биосинтез глюкозы — глюконеогенез. В широком смысле под глюконеогенезом понимают синтез глюкозы И3 всех метаболитов — источников глюкозы в более узком смысле — только из аминокислот. Синтез глюкозы происходит главным образом в печени и корковом слое почек. В печени он происходит после истощения запасов печеночного гликогена для поддержания в крови уровня глюкозы (при длительной физической нагрузке и при длительном голодании). Источники синтеза глюкозы 1) при длительной физической нагрузке — лактат, поступающий из мышц, и глицерин, поступающий из жировой ткани 2) при длительном голодании — глицерин, поступающий из жировой ткани, и аминокислоты, поступающие из тканей (мышц) вследствие разрушения белков. [c.164]

    Предшественниками глюкозы при глюконеогенезе являются пируват, оксалоацетат и фосфоенолпируват. Поэтому аминокислоты, которые превращаются в эти соединения, могут быть использованы для синтеза глюкозы (глюконеогенез из аминокислот) такие аминокислоты называют гликогенпыми. Глюконеогенез с участием аминокислот происходит особенно активно при преимущественно белковом питании, а также при голодании. В последнем случае используются аминокислоты собственных белков тканей. Катаболизм лейцина и лизина не включает стадии образования пировиноградной кислоты углеродная часть превращается непосредственно в ацетоуксусную кислоту и ацетил-КоА, из которых синтез углеводов невозможен это кетогепные аминокислоты. Тирозин, фенилаланин, изолейцин и триптофан являются одновременно и гликогенными, и кетогенными часть углеродных атомов их молекул при катаболизме образует пируват, другая часть включается в ацетил-КоА, минуя стадию пирувата. [c.340]

    Напротив, в митохондриях печени, сердечной и скелетных мышц, почках и других органах при изменении функционального состояния, при метаболических сдвигах разной природы преобладающим может стать любой из основных путей метаболизма пирувата. Например, в митохондриях печени в условиях интенсивного глюконеогенеза или при голодании скорость реакции карбоксилирования пирувата в 5-10 раз и более превышает скорость ПДГ-реакции. [c.166]


    ГЛЮКОЗЫ. Наступившее неустойчивое равновесие может нарушаться в результате роста потребности в глюкозе или при нарушении процессов утилизации в таком случае происходит дальнейшая мобилизация жиров. Обеспечение организма глицеролом является важной функцией жировой ткани, поскольку только этот источник углеводов (наряду с углеводами, образующимися из белков при глюконеогенезе) может обеспечить голодающий организм глюкозой, необходимой для тех процессов, при осуществлении которых субстратом может служить только глюкоза. У человека при длительном голодании глюконеогенез из белков снижается из-за уменьшения высвобождения аминокислот, особенно аланина, из мышц. Это совпадает по времени с адаптацией мозга, в результате которой он оказывается способным компенсировать окисление глюкозы примерно на 50% за счет окисления кетонов. [c.298]

    При голодании в результате преобладания действия глюкагона активируются липолиз в жировой ткани и -окисление в печени. Количество оксалоацетата в митохондриях уменьшается, так как его образуется меньше, и, кроме того, он выходит в цитозоль (восстановившись до малата), где используется в глюконеогенезе. В результате скорость поступления ацетил-КоА в ЦТК снижается и избыток ацетил-КоА используется для синтеза кетоновых тел. Синтез кетоновых тел увеличивается также при сахарном диабете (см. раздел II). [c.191]

    Полное окисление безазотистых остатков аминокислот до углекислого газа и воды реального значения не имеет. Основным путем их использования является глюконеогенез. Этот процесс усиливается при голодании и сахарном диабете. [c.244]

    Синтез глюкозы из аминокислот в организме человека происходит практически постоянно, но особенно усиливается при голодании, преимущественно белковом питании и некоторьгх патологических состояниях (сахарный диабет). При голодании источником аминокислот для глюконеогенеза служат белки мышц, печени, соединительной и ряда других тканей. [c.412]

    Основной процесс, обеспечивающий ткани глюкозой в период голодания, — глюконеогенез. Глюконеогенез ускоряется через 4—6 ч после последнего приема пищи. [c.286]

    Хотя мозг не может прямо использовать свободные жирные кислоты или липиды крови в качестве клеточного топлива, однако он утилизирует доставляемый кровью р-гидроксибутират, образующийся в печени из жирных кислот. Способность мозга окислять Р-гидроксибу-тират через промежуточное образование ацетил-СоА (разд. 18.10) приобретает особо важное значение при продолжительном голодании, когда практически весь гликоген печени оказывается израсходованным в этих условиях мозг переходит на использование в качестве источника энергии имеющихся в организме жиров. Запасы жира в организме намного превышают запасы гликогена при голодании запасов гликогена хватает всего лишь на несколько дней. Использование мозгом р-гидроксибутирата во время голодания позволяет также сохранить белки мышц, которые-через процесс глюконеогенеза-служат для мозга последним источником глюкозы при голодании. [c.759]

    После 2—3 нед голодания энергетические потребности мозга частично обеспечиваются кетоновыми телами. Скорость глюконеогенеза из аминокислот снижается. Замедляется катаболизм белков. [c.287]

    В течение нескольких первых дней голодания быстро распадаются мышечные белки — основной источник субстратов для глюконеогенеза. [c.287]

    Б. Регуляция секреции и синтеза. На секрецию ГР влияет ряд стимулов (сон, стресс), и она, подобно секреции многих гипофизарных гормонов, носит эпизодический и пульсирующий характер. В течение нескольких минут уровень ГР в плазме может измениться в 10 раз. Один из самых больших пиков отмечается вскоре после засыпания, что подтверждает поговорку Кто не спит, тот не растет . К другим стимулам относятся стресс (боль, холод, тревога, хирургическое вмешательство), физические упражнения, острая гипогликемия или голодание, белковая пища или аминокислота аргинин. Реакции на стресс могут быть опосредованы катехоламинами, действующими через гипоталамус. Возможна связь этих и многих других эффекторов с основным физиологическим действием ГР, состоящим в сберегании глюкозы. При стрессе, гипогликемии, во время сна или голодания ГР стимулирует липолиз (поступление жирных кислот) и проникновение в клетки аминокислот (потенциальных субстратов глюконеогенеза), сберегая таким образом глюкозу для метаболизма мозга. Ключевую роль может играть внутриклеточ- [c.173]

    В условиях голодания часть тканевых белков распадается до аминокислот. Аминокислоты включаются в процесс катаболизма, в котором в качестве промежуточных продуктов образуются метаболиты глюконеогенеза. При несбалансированном питании, в частности когда достаточный по калорийности рацион содержит мало углеводов, для синтеза глюкозы используются аминокислоты, образующиеся из пищевых белков. [c.381]

    В организме взрослого человека за сутки может синтезироваться около 80 г глюкозы, главным образом в печени, а также в корковом веществе почек и в слизистой оболочке кишечника. Биологическое значение глюконеогенеза заключается не только в возвращении лактата в метаболический фонд углеводов, но и в обеспечении глюкозой мозга при недостатке углеводов в организме, например, при углеводном или полном голодании. [c.267]


    В течение первой недели голодания белок мышц также используется в качестве источника энергии. Он превращается в глюкозу в результате процесса, называемого глюконеогенезом. Затем использование белка практически прекращается до тех пор, пока не истощатся жировые запасы. Вновь использование белка начинается на конечной стадии голодания перед смертью (рис. 8.29). Для покрытия энергетических расходов начинают утилизироваться собственные ткани, например мьппцы. Смерть обычно наступает при использовании примерно половины белков организма. Полное голодание приводит к смерти через 40—60 дней. [c.338]

    Скорость глюконеогенеза у человека может изменяться от нуля до примерно 4 г за 1 ч (около 100 г за сутки). В ближайшие часы после приема пищи, богатой углеводами, она минимальна, а затем нарастает по мере исчерпания запасов гликогена в печени, достигая максимума при голодании в течение нескольких часов. [c.403]

    Третья фаза продолжается несколько недель. Скорость распада белков стабилизируется на уровне примерно 20 г в сутки при распаде такого количества белков образуется и выводится около 5 г мочевины в сутки (при обычном питании — 20-25 г). Азотистый баланс во все фазы голодания отрицательный, поскольку поступление азота равно нулю. Соответственно снижению скорости распада белков уменьшается и скорость глюконеогенеза. В этой фазе и для мозга основным источником энергии становятся кетоновые тела. Если в этой фазе ввести аланин или другие гликогенные аминокислоты, немедленно повышается концентрация глюкозы в крови и снижается концентрация кетоновых тел. [c.411]

    В период голодания концентрация глюкозы в крови понижается, значение инсулин-глюкагонового индекса падает. Концентрация глюкозы в крови в этих условиях поддерживается за счет процессов распада гликогена печени и глюконеогенеза. [c.384]

    Важнейшее изменение, наступающее через трое суток голодания,-образование в печени больших количеств ацетоацетата и р-гидроксибутирата (кетоновых тел) (рис. 23.20), Поскольку цикл трикарбоновых кислот не способен окислить все ацетильные группы, образующиеся при расщеплении жирных кислот, синтез кетоновых тел из ацетил-СоА существенно увеличивается. Глюконеогенез истощает запас оксалоацетата, необходимого для вступления аце-тил-СоА в цикл трикарбоновых кислот. Это приводит к тому, что в печени образуются большие количества кетоновых тел, которые выделяются в кровь. К этому времени мозг начинает потреблять значительное количество ацетоацетата вместо глюкозы. Через три дня голодания примерно треть энергетических потребностей мозга удовлетворяется кетоновыми телами (табл. 23.2), Сердечная мышца также использует в качестве источника энергии кетоновые тела. Все эти изменения энергетического метаболизма называют кетозом. [c.294]

    Метаболизм в мозгу, мышцах, жировой ткани и печени сильно различается. У нормально питающегося человека глюкоза служит практически единственным источником энергии для мозга. При голодании кетоновые тела (ацетоацетат и 3-гидрокси-бутират) приобретают роль главного источника энергии для мозга. Мышцы используют в качестве источника энергии глюкозу, жирные кислоты и кетоновые тела и синтезируют гликоген в качестве энергетического резерва для собственных нужд. Жировая ткань специализируется на синтезе, запасании и мобилизации триацилглицеролов. Многообразные метаболические процессы печени поддерживают работу других органов. Печень может быстро мобилизовать гликоген и осуществлять глюконеогенез для обеспечения потребностей других органов. Печень играет главную роль в регуляции липидного метаболизма. Когда источники энергии имеются в достатке, происходят синтез и этерификация жирных кислот. Затем они переходят из печени в жировую ткань в виде липопротеинов очень низкой плотности (ЛОНП). Однако при голодании жирные кислоты превращаются в печени в кетоновые тела. Интеграция активности всех этих органов осуществляется гормонами. Инсулин сигнализирует об изобилии пищевых ресурсов он стимулирует образование гликогена и триацилглицеролов, а также синтез белка. Глюкагон наоборот, сигнализирует о пониженном содержании глюкозы в крови он стимулирует расщепление гликогена и глюконеогенез в печени и гидролиз триацилглицеролов в жировой ткани. Адреналин и норадреналин действуют на энергетические ресурсы подобно глюкагону отличие состоит в том, что их основная мишень-мышцы, а не печень. [c.296]

    Обе дегидрогеназы пентозофосфатного пути можно классифицировать как адаптивные ферменты, поскольку их активность увеличивается у животных в условиях хорошего питания, а также при введении инсулина животным, страдающим диабетом. При диабете и голодании эти ферменты малоактивны. ЯблЬчный фермент и АТР-цитратлиаза ведут себя подобным образом это позволяет заключить, что они участвуют в липогенезе, а не в глюконеогенезе. [c.217]

    Активность пируватдегидрогеназы может регулироваться как путем фосфорилирования, катализируемого АТР-специфичной киназой и приводящего к уменьшению активности, так и путем дефосфорилирования под действием фосфатазы, приводящего к увеличению активности дегидрогеназы. При увеличении соотношений [ацетил-СоА]/[СоА], П АОН]/рЧАО ] и [АТР]/[АОР] киназа становится более активной. Следовательно, пируватдегидрогеназа и гликолиз ингибируются при окисленин жирных кислот, в процессе которого эти соотношения увеличиваются (рис. 22.3). При голодании активность дегидрогеназы уменьшается, а при действии инсулина-увеличивается в жировой ткани (но не в печени). Глюкагон ингибирует гликолиз и активирует процесс глюконеогенеза в печени путем увеличения концентрации сАМР, что в свою очередь вызывает повышение активности сАМР-зависимой протеинкиназы последняя фосфорилирует и инактивирует пируват-киназу. Глюкагон влияет также на концентрацию [c.217]

    Протекание процессов окисления и биосинтеза жирных кислот в различных компартментах позволяет избирательно контролировать каждый процесс в соответствии с потребностями ткани. При голодании и сахарном диабете окисление жирных кислот протекает более интенсивно, в результате чего в печени происходит образование кетоновых тел (кетоз). Кетоновые тела имеют кислотную природу, поэтому при их избыточном образовании в течение длительного времени, как, например, при сахарном диабете, развивается кетоацидоз, который в конечном итоге может привести к летальному исходу. Поскольку глюконеогенез зависит от окисления жирных кислот, нарушения последнего, вызванные различными причинами, приводят к гипогликемии она возникает, в частности, при недостатке карнитина или снижении активности ферментов, участвующих в процессе окисления жирных кислот, например карнитин-пальмитоилтрансферазы, а также при ингибировании окисления жирных кислот ядами, например ги- [c.225]

    При низком инсулин-глюкагоновом индексе, характерном для периода длительного голодания, происходят фосфорилирование БИФ и проявление его фосфатазной активности, результатом чего являются снижение количества фруктозо-2,6-бис-фосфата, замедление гликолиза и переключение на глюконеогенез. [c.155]

    При голодании гормон глюкагон через аденилат-циклазную систему в жировой ткани активирует распад жира. Жирные кислоты выделяются в кровь и транспортируются в комплексе с альбуминами в печень в печени увеличивается скорость -окисления и образуется большое количество ацетил-КоА скорость окисления ацетил-КоА в цикле Кребса в этих условиях снижена в результате ингибирования регуляторных ферментов цитратного цикла аллостерическими ингибиторами АТР и NADH, концентрация которых повышена в результате активного -окисления. Кроме того, при высокой концентрации NADH оксалоацетат восстанавливается до малата и в такой форме переносится в цитозоль, где реакция идет в обратном направлении и оксалоацетат становится субстратом для глюконеогенеза. В результате в митохондриях накапливается ацетил-КоА и используется для синтеза кетоновых тел (рис. 8.9). [c.190]

    Важной особенностью жиров является также то, что при их гидролизе образуется два функционально разных продукта — жирные кислоты и глицерин. Глицерин используется для глюконеогенеза (наряду с аминокислотами), тем самым участвуя в обеспечении глюкозой мозга и других глюкозозависимых органов при голодании. Таким образом, депонирование жиров можно рассматривать и как форму запасания глюкозы. Если принять, что на долю глицерина приходится Vlo часть массы жира, то количество глицерина, запасенного в жирах, составит примерно 1 кг, т. е. в 3 раза больше предельных запасов гликогена. Этот запас глюкозы представляется существенным, особенно если учесть, что при голодании обмен веществ снижен (через неделю голодания — примерно вдвое). [c.312]


Смотреть страницы где упоминается термин Глюконеогенез при голодании: [c.166]    [c.168]    [c.88]    [c.380]    [c.384]    [c.411]    [c.105]   
Биохимия человека Т.2 (1993) -- [ c.298 ]

Биохимия человека Том 2 (1993) -- [ c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Голодание



© 2024 chem21.info Реклама на сайте