Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление глюкозы в организме

    Одним из основных источников энергии в живом организме является окисление глюкозы  [c.52]

    В клетках живого организма происходит полное окисление глюкозы. Напишите уравнение реакции и рассчитайте объем оксида углерода (IV), который выделится при окислении 200 г глюкозы (н. у.). [c.91]

    В живых организмах освобожденная при окислении глюкозы энергия не сразу используется в различных процессах жизнедеятельности, а запасается как бы впрок в различных соединениях, богатых энергией. Обычно такими соединениями являются эфиры фосфорной кислоты АТФ, АДФ, креатин- и аргининфосфаты и др. [c.80]


    Огромная эффективность, с которой энергия высвобождается, запасается и снова выделяется, - тоже результат деятельности ферментов. Энергию организм может получать не только из глюкозы, но и при расщеплении белков, а также жирных кислот, содержащихся в жирах. Для окисления этих веществ клетки используют те же ферменты, что и для окисления глюкозы. [c.446]

    Физик. Но зачем организму такой сложный путь Почему бы не использовать сразу энергию, вьщеляющуюся при окислении глюкозы  [c.36]

    Установлено, что дыхательный коэффициент RQ, стр. 209) для мозга близок к единице. Это означает, что окисление углеводов является основным источником энергии для мозговой ткани. Действительно, кровь, прошедшая через мозг, содержит значительно меньше глюкозы, причем количество исчезнувшей глюкозы соответствует количеству поглощенного кислорода. Потребление глюкозы в головному мозгу в несколько раз больше, чем в почках или мышцах. Мозг является единственным органом, в котором снабжение энергией осуществляется почти исключительно за счет распада глюкозы. Даже при диабете, когда дыхательный коэффициент для организма в целом значительно снижен, он остается в мозгу близким к единице. Наркотические вещества (за исключением, по-видимому, газообразных наркотиков) угнетают в мозгу главным образом окисление глюкозы, молочной кислоты и пировиноградной кислоты, совершенно не действуя, например, на окисление янтарной кислоты. Это угнетение приводит к понижению функциональной активности нервной ткани. Вот почему понижение нервной деятельности во время наркоза или сна сопровождается уменьшением потребления глюкозы мозгом. Наоборот, при возбуждении центральной нервной системы глюкоза, доставляемая кровью, задерживается и окисляется мозгом в повышенном количестве. [c.406]

    Триозофосфаты — фосфорные эфиры глицеринового альдегида и ди-оксиацетона, образующиеся в организме в качестве промежуточных продуктов окисления глюкозы и глицерина. [c.300]

    Он необходим для поддержания роста организма и нормального состояния кожи. Одно из производных рибофлавина — простетическая группа фермента, названного в свое время желтым ферментом, который катализирует окисление глюкозы и ряда других веществ в организме животных рибофлавин входит в состав многих других ферментов. [c.411]

    Около ста лет назад была высказана мысль, что биологические реакции, протекающие при усвоении пищи, напоминают сгорание органических молекул. Действительно, конечным результатом как биологического окисления, так и сгорания являются одни и те же процессы образуются углекислый газ, вода и энергия, а также потребляется кислород. Однако, в то время как при обычном сгорании органических соединений, например глюкозы, выделяется очень немного полезной энергии, биологическое окисление глюкозы идет в несколько стадий, а энергию, которая при этом освобождается, организм запасает в виде так называемых макроэргических соединений. Ведущую роль среди таких соединений играет аденозинтрифосфат, широко известный под названием АТФ. В настоящем разделе мы рассмотрим наиболее важную [c.186]


    Дыхание необходимо как автотрофным (главным образом фотосинтезирующим), так и гетеротрофным (т.е. питающимся автотрофами и друг другом) организмам. Дыхание в биохимическом смысле сводится к окислению углеводов. При окислении глюкозы выделяется большое количество энергии [c.103]

    Характерная особенность процессов энергетического обмена заключается в ступенчатом использовании свободной энергии питательных веществ. Если бы в клетке окисление глюкозы или других соединений происходило в одну стадию, то одновременное выделение нескольких сот килокалорий не могло бы быть использовано клеткой, привело бы к выделению большого количества тепла, резкому повышению температуры и гибели клетки. Именно поэтому многоступенчатое использование энергии питательных веществ принципиально необходимо для жизнедеятельности организма. [c.64]

    Окисление глюкозы и гликогена в тканях в конечном счете и является основным источником энергии, необходимой организму для осуш,ествления разнообразных функций. [c.240]

    Всякий раз, когда окисление глюкозы почему-либо ограничено, может возникнуть кетоз. Таким образом, к кетозу, а следовательно, и к ацидозу приводит нарушение не липидного обмена, а углеводного. Чаще всего причиной такого нарушения углеводного обмена бывают голод и диабет. При голодании прекращается поступление углеводов с пищей. При диабете глюкоза не может быть окислена, так как она неспособна пройти через клеточную стенку. Когда потребность в энергии (т. е. в АТФ) не может быть удовлетворена за счет окисления глюкозы, организм переключается на окисление жирных кислот, которые мобилизуются из жировых депо и доставляются кровью в печень. От большого количества поступающих липидных продуктов кровь мутнеет такое состояние известно под названием липемии. При этом наблюдается накопление жира в печени. Так как окисление жирных кислот усиливается, то образование кетоновых тел превышает их использование, а это приводит к развитию кетоза. До тех пор пока способность тела окислять глюкозу не будет восстановлена (например, введением инсулина), ацидоз, со всеми сопутствующими ему явлениями, будет развиваться. [c.398]

    Каков же энергетический баланс аэробной стадии окисления пировиноградной кислоты через цикл ди- и трикарбоновых кислот Мы видели, что при окислительном декарбоксилировании пировиноградной кислоты, а также в реакциях (4), (8) и (12) этого цикла образуется всего четыре молекулы, восстановленных НАД или НАДФ. Кроме того, при окислении янтарной кислоты в реакции (10) образуется одна молекула восстановленного флавинового фермента (ФАД-Нг). При окислении каждого восстановленного пиридиннуклеотида может синтезироваться по три молекулы АТФ в результате возникают 3X4=12 молекул АТФ. За счет энергии окисления восстановленного ФАД Нг образуется две молекулы АТФ, так как при окислении этого соединения имеются только два фосфорилирования (между цитохромами O и с и цитохромами а и Оз). Следовательно, всего при полном окислении одной грамм-молекулы пировиноградной кислоты может синтезироваться 12+2=14 молекул АТФ. Но каждая молекула глюкозы дает две молекулы пировиноградной кислоты, поэтому на аэробной стадии окисления глюкозы всего образуется 14X2 = 28 АТФ, т. е. организм может использовать 12x28 = 336 ккал энергии на каждый моль глюкозы. Эффективность использования энергии при аэробном дыхании составляет 168-100 336-100 л [c.177]

    Эта биохимическая реакция является источником энергии, необходимой организму для его жизнедеятельности. При окислении глюкозы до пировиноградной кислоты часть выделяющейся при этом энергии аккумулируется в виде макроэргических связей АТФ. При ферментативном превращении АТФ в АДФ эта энергия выделяется вновь и используется организмом. Этот процесс протекает при участии ферментов, содержащих двухзарядные ионы металлов, чаще всего Mg и реже — Мп Предполагают, что ион металла в ходе процесса образует с двумя крайними фосфатными группами АТФ хелатное кольцо  [c.255]

    Эта энергия расходуется организмом на выполнение полезной работы. В частности, энергия, выделяемая при окислении глюкозы, используется на осуществление реакций, требующих затраты энергии. Один из вариантов такого сочетания реакций схематически изображен на рис. 18.8. В рассматриваемом процессе важную роль играет адено-зинтрифосфат (АТФ)-очень энергоемкая молекула. Когда АТФ превращается в несколько менее энергоемкую молекулу аденозиндифосфата (АДФ), вьщеляется энергия, которая расходуется на осуществление других химических реакций. Вьщеляемая при окислении глюкозы энергия частично идет на превращение АДФ обратно в АТФ. Взаимные превращения АТФ-АДФ используются в организме как способ запасания энергии и ее высвобождения для проведения необходимых реакций. Сочетание реакций, когда свободная энергия, выделяемая в одной из реакций, расходуется на проведение другой реакции, происходит при обязательном участии катализаторов, роль которых выполняют ферменты. В гл. 25, посвященной биосфере, мы рассмотрим энергетические соотношения в живых системах более подробно. [c.192]


    Глюкоза — один из самых распространенных источников эиергии в биологических системах. Конечными продуктами ири окислении глюкозы в живых организмах, так же как и при ее -сгорании в калориметре, являются СОг и НгО [c.393]

    Он, по-видимому, имеет существенное значение для роста организма и нормального состояния кожи. Известно, что рибофлавин представляет собой простетическую группу фермента, называемого желтым ферментом, который катализирует окисление глюкозы и ряда других веществ в организме животных. [c.494]

    Недостаток витамина, или тиамина (разд. 10.4), обусловливает заболевание, известное под названием бери-бери. Теперь нам ясно, что в организме животных, лишенных тиамина, оказывается невозможным нормальное окисление пирувата. Особенно сильно влияет такое нарушение на мозг, который обычно получает всю необходимую энергию путем аэробного окисления глюкозы и для которого поэтому окисление пирувата-жизненно необходимый процесс. Характерный для бери-бери полиневрит [c.481]

    Количество энергии, выделяемой при реакциях, протекаю- щих в живых организмах и осуществляемых в химических ла-Г бораториях совершенно одинаково. Так, при сжигании 1 грамм->3 молекулы глюкозы на воздухе выделяется 686 ккал столько же энергии выделяется и при окислении глюкозы до СОг и НгО в живых организмах. Точно так же термодинамически равное количество энергии необходимо затратить, например, для восстановления нитратов до аммиака в растениях или в химической лаборатории, или для синтеза различных органических соединений на заводах, или в тканях живых организмов. [c.17]

    Все живые организмы, будь то растения или животные, требуют энергии. Эта энергия получается при контролируемом окислении жиров и углеводов (или белков, если в пище их избыток). Например, полное окисление 1 моля глюкозы приводит к выделению 2814 кДж энергии (рис. 15.2). Одинаковое суммарное количество энергии высвобождается как при окислении глюкозы при ее непосредственном сгорании, так и при многостадийном процессе, включающем гликолиз, цикл лимонной кислоты и цикл дыхания (разд. 15.2, 15.4 и 13.3). [c.309]

    Здесь необходимо также отметить, что фосфорилирование, под которым в биохимии принято понимать образование сложных эфиров фосфорной кислоты и разнообразных органических соединений, весьма распространено в животном организме. Процессы окисления многих органических веществ, непрерывно протекающие в животном организме, сопряжены с фосфорилированием как исходных, так и промежуточных продуктов окисления. Например, в процессе окисления глюкозы образуются глюкозо-1-фосфорная кислота, глюко-зо-6-фосфорная кислота, фруктоза-1,6-дифосфорная кислота и др. [c.295]

    В противоположность этому, химический путь окисления глюкозы в организме в достаточной степени расшифрован. Мы кратко это рассмотрим, причем не для того, чтобы углубляться в изучение химизма и последовательности отдельных реакций, а скорее для того, чтобы расширить и углубить наши представления об удивительно сложных химических механизмах, которые функционируют в живом организме и являются его неотъемлемой частью. [c.377]

    Иисулии состоит из двух полнпептидных цепей (А-цепи и В-цепи) по 21 и 30 аминокислотных остатков соответственно, соединенных двумя дисульфидными мостиками в бициклическую систему. Кроме того, А-цепь имеет собственный дисульфидный мостик (рис. 2-40). Интересно, что инсу-лины из разных организмов, несмотря на различные аминокислотные последовательности, в стандартных тестах (спазмолитический тест на мышах, окисление глюкозы в жировых тканях или в отдельных жировых клетках) показывают примерно равную биологическую активность. Так, инсулин морских свинок отличается от инсулина крысы не менее чем в 17 положениях. Обычно отличия в первичной структуре велики настолько, насколько далеко отстоят организмы друг от друга в филогенетическом развитии. [c.263]

    Однако можно сделать так, что секундомер будет выполнять и другую функцию. Нетрудно представить себе, например, маленький шкивный механизм, соединяющий секундомер с колесиком заводной игрушки. Естественно, что если бы это было сделано и если энергия использовалась бы в этом случае для приведения в движение игрушки, стрелки секундомера двигались бы более медленно. Мы не могли бы сказать, сколько времени будет работать секундомер. Однако общее количество освобожденной энергии (движение игрушки плюс движение часовой стрелки) было бы таким же, как и в первом случае. Окисление глюкозы в организме также имеет две функции. [c.375]

    ОКИСЛЕНИЕ ГЛЮКОЗЫ В ОРГАНИЗМЕ [c.377]

    Биолог. Для такого выбора есть несколько причин. Прежде всего регулирование содержания сахара в крови является тем процессом, от которого прямо зависит снабжение глюкозой клеток организма. В том числе, что особенно важно, и клеток головного мозга, которые могут получать необходимую для выполнения своих жизненно важных функций энергию только за счет окисления глюкозы [Грин и др., 1993]. Поэтому уровень сахара в крови регулируется организмом очень строго и он сравнительно мало различается у всех млекопитающих [Шмидт-Ниельсен, 1987]. Значительные отклонения содержания сахара от гомеостатического уровня опасны для организма и могут привести к самым тяжелым последствиям. [c.53]

    Окисление глюкозы Hi20,, в тканях организма приводит к образованию СО 2 и Н2О. В отличие от этого при анаэробном разложении, которое осуществляется в процессе ферментации, образуется этиJЮвый спирт С2Н5ОН. а) Сравните константы равновесия следующих реакций  [c.198]

    В организме Л. к. ускоряет окисление глюкозы, ее фосфорилирование, гликолиз и увеличивает накопление гликогена в печени. Л. к. обладает также детоксифицирующим действием при отравлениях фосфорорг. соед., тяжелыми металлами и их солями, цианидами, этанолом и др. [c.601]

    Наибольшее внимание исследователей привлекали процессы окисления в организме. Уже был известен феномен химического катализа, означающий, что многие реакции in vitro протекают быстро и энергично в присутствии ничтожных количеств примесей, как будто не участвующих в реакции. Так, была установлена большая каталитическая роль ряда неорганических веществ. Горение глюкозы на воздухе, например, протекает очень медленно, а если добавить немного солей лития (или золы, также содержащей ничтожные количества лития), то горение идет весьма интенсивно  [c.116]

    Полное окисление глюкозы до Oj может проходить не через глюко-ковую кислоту (пентозофосфатный цикл), а через глюкуроновую кисло-ту Эта последовательность реакций известна под названием цикла уроновых кислот. Цикл уроновых кислот в энергетическом отношении эквивалентен окислительному пентозофосфатному циклу. Функционирование цикла уроновых кислот в организме человека подтверждается тем, что при пентозурии — болезни, связанной с недостатком одного из ферментов этого цикла, один из промежуточных продуктов (/.-ксилулоза) накапливается в значительных количествах и выделяется с мочой. [c.375]

    Все низкомолекулярные компоненты клеток должны в определенных условиях подвергаться деградации. Иногда деградация должна обеспечить удаление скопившихся излишков тех или иных соединений. В ряде важных случаев такая деградация является поставщиком необходимых строительных компонентов и обеспечивает биоэнергетические потребности организма. Так, в 1.2 уже отмечалось, что окисление глюкозы и других органических соединений атмосферным кислородом является важнейшим источником энергии у аэробных, не способных к фотосинтезу организмов. Процессы окислительной и неокислительной деструкции также являются многостадийными и проходят через ряд промежуточных соединений. Например, важным этапом окислительной деградации глюкозы является ее превращение в соль пировиноградной кислоты — пируват СНзСОСОО". Этот процесс, который детально рассматривается в 8.2, проходит через образование девяти промежуточных соединений. Дальнейшее полное сгорание цирувата до СО2 и воды проходит еще через одиннадцать промежуточных веществ (см. 8.4). [c.59]

    В процессе катаболизма аминокислот у всех живых организмов образуется аммиак — соединение, токсичное даже в самьгх малых концентрациях. Его содержание в крови должно быть не более 40—50 мкмоль/л, иначе возможно нарушение функции мозга и развитие комы. Механизм токсичного действия аммиака на мозг пока не вполне ясен. При избытке аммиака в митохондриях клеток головного мозга активируется реакция восстановительного аминирования а-кетоглутарата. Результатом является ее отток из пула промежуточных метаболитов цикла трикарбоновых кислот и как следствие снижение скорости окисления глюкозы, играющей роль главного источника энергии для клеток мозга. По-видимому, имеются и другие причины высокой чувствительности мозга к аммиаку, пока еще недостаточно изученные. [c.388]

    Случай 2. Окисление глюкозы. Энтропия характеризует состояние не только энергии, но и вещества. Аэробные организмы извлекают свободную энергию из глюкозы, которую они получают из окружающей среды. Для того чтобы добыть эту энергию, они окисляют глюкозу молекулярным кислородом, также поступающим из среды. Конечные продукты окислительного метаболизма глюкозы, СО2 и Н2О, возвращаются в окружающую среду. При этом процессе энтропия окружающей среды возрастает, а сам организм остается в стационарном состоянии и степень его внутренней упорядоченности не изменяется. Возрастание энтропии и в этом случае отчасти связано с.рассеянием тепла, но здесь возникает неупорядоченность и другого рода, иллюстрируемая суммарным уравнением окисления глюкозы в живых организмах СбН120б-Ь 6О2- 6СО2 4-6Н2О. Схематически этот процесс можно изобразить следующим образом  [c.405]

    Организм может использовать энергию образовавшейся молекулы АТФ для восстановления окисленной молекулы, например фосфоглицериновой кислоты до молекулы, находящейся на уровне окисления углевода, например фосфоглицеральдегида. Обе эти молекулы — промежуточные соединения, образующиеся по ходу метаболизма при анаэробном окислении глюкозы в пировиноградную кислоту. Восстановителем служит восстановленный никотинамид, который также, как мы видели ранее, участвует в схеме анаэробного окисления глюкозы. [c.38]

    В процессе окисления глюкозы выделяется тепло, необходимое организму для совершения различной работы кроме того, окисление обеспечивает выполнение одной из наиболее замечательных и удивительных функций, которую мы и будем изучать. Оно обеспечивает синтез другой богатой энергией молекулы — аде-нозинтрифосфата, или АТФ. [c.375]


Смотреть страницы где упоминается термин Окисление глюкозы в организме: [c.283]    [c.405]    [c.117]    [c.274]    [c.58]    [c.21]    [c.30]    [c.284]    [c.194]    [c.197]    [c.377]   
Смотреть главы в:

Молекулярные основы жизни -> Окисление глюкозы в организме




ПОИСК





Смотрите так же термины и статьи:

Глюкоза, окисление



© 2025 chem21.info Реклама на сайте