Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин расщепление

    В качестве примера такого ферментативного разделения рассмотрим расщепление ( )-лейцина при помощи фермента ацилазы, выделенного из почек свиньи. Этот фермент катализирует гидролиз амидных связей ъ-аминокислот, но не в-аминокислот. Сначала рацемическую аминокислоту ацетилируют уксусным ангидридом [c.392]

    При распаде изолейцина р-окисление идет до конца обычным образом с образованием ацетил-СоА и пропионил-СоА. Однако в ходе катаболизма лейцина после дегидрирования, которым начинается р-окис-ление, происходит присоединение двуокиси углерода, осуществляемое биотинилферментом (гл. 8, разд. В). Двойная связь, сопряженная с карбонилом тиоэфира, придает этому карбоксилированию сходство со стандартной реакцией р-карбоксилирования. Зачем понадобился этот лишний СОг Метильная группа в Р-положении блокирует полное р-окисление, но при этом остается возможным альдольное расщепление, приводящее к образованию ацетил-СоА и ацетона. Дальнейший метаболизм ацетона сопряжен с определенными трудностями. В случае присоединения СОг продуктом оказывается ацетоацетат, катаболизм которого легко доводится до конца через его превращения в ацетил-СоА. [c.116]


Рис. 19-4. Включение углеродных скелетов обычных аминокислот в цикл лимонной кисло ты. При расщеплении лейцина и триптофана образуется как ацетоацетил-СоА, так и ацетил-СоА. Рис. 19-4. <a href="/info/627249">Включение углеродных</a> скелетов <a href="/info/626838">обычных аминокислот</a> в <a href="/info/71266">цикл лимонной</a> кисло ты. При расщеплении лейцина и триптофана образуется как ацетоацетил-СоА, так и ацетил-СоА.
    При питании больных диабетом (или животных, у которых диабет был вызван искусственно при помощи флоризина) индивидуальными аминокислотами наблюдалось, что большинство аминокислот вызывает повышенное выделение глюкозы и лишь некоторые (лейцин, изолейцин, фенилаланин и тирозин) дают ацетон и аце-тоуксусную кислоту, являющиеся, как известно, метаболитами жиров (том I). Следовательно, аминокислоты делятся на глюкогенные и кетогенные. (Продукты превращения следующих четырех аминокислот неизвестны лизина, метионина, триптофана и гистидина.) Отсюда следует, что в процессе расщепления аминокислот в организме некоторые аминокислоты включаются, начиная с определенной стадии, в обмен углеводов, а другие —в обмен жиров. Ниже мы опишем вкратце начало процесса расщепления аминокислот в живых организмах. [c.387]

    Гидролазы. Ферменты этой группы играют особенно важную роль в пищеварении и в процессах пищевой технологии. К ним относится большая группа протеолитических ферментов, катализирующих гидролиз белков и пептидов. Большое значение в биохимии пищеварения принадлежит протеолитическим ферментам (пепсин, химиотрипсин, аминопептидаза, карбоксипептидаза и др.), осуществляющим деполимеризацию молекул белка по мере его движения по пищеварительному тракту. Протеолитиче-ские ферменты участвуют в процессах, происходящих при переработке мяса, в хлебопечении. С их помощью проводят умягчение мяса и кожи, их применяют при получении сыров. Действие протеаз очень избирательно. Одни протеазы разрушают пептидные связи внутри молекул белка — эндопептидазы и на конце ее молекулы (экзопептидазы), т. е. отщепляют аминокислоты с N- или С-конца, другие расщепляют пептидные связи только между отдельными аминокислотами. Так, трипсин разрушает пептидную связь между лизином (Лиз) или аргинином (Apr) и другими аминокислотами, пепсин — между аминокислотами с гидрофобными радикалами, например между валином (Вал) и лейцином (Лей). Фермент химотрипсин гидролизует пептидную связь между триптофаном, (см. схему) тирозином и другими аминокислотами. В самом общем виде схема расщепления пептидных связей в полипептидной цепи может быть представлена следующим образом  [c.23]


    Биохимическое расщепление основано на наблюдении Пастера, что грибки или бактерии, растущие в растворах рацемических соединений и питающиеся ими, почти всегда потребляют и разрушают лишь одну из обеих энантиоморфных форм, оставляя другую нетронутой. Таким образом, оказывается возможным выделение последней формы в чистом виде. Например, Peni illium glau um ассимилирует в растворе аммониевой соли d,/-винной кислоты только -форму и оставляет /-форму тот же грибок разрушает /-молочную, /-миндальную и /-аспарагиновую кислоты, а также /-лейцин. По-видимому, для того чтобы определенный микроорганизм мог ассимилировать какое-либо соединение, последнее должно обладать определенной пространственной конфигурацией представляется далее, что один и тот же грибок при одинаковых внешних условиях разрушает оптически активные формы с одинаковой конфигурацией. Однако грибок постепенно можно заставить ассимилировать и второй антипод. [c.135]

    Расщепление С -лейцина описано Ридом [5]. [c.231]

    Химотрипсин гораздо менее специфичен, чем трипсин. Избирательное расщепление пептидных связей, в которых принимают участие карбоксильные группы ароматических аминокислот, происходит только при краткосрочном гидролизе. Длительный гидролиз приводит к разрушению и других пептидных связей, например образованных остатками лейцина, гистидина и глутамина. [c.169]

    Полнота расщепления полипептидной цепи зависит от окружения модифицированных остатков цистеина. Если с остатками цистеина соседствуют остатки валина, пролина, лейцина, тирозина, лизина, аланина и аспарагиновой кислоты, то расщепление идет на 90—95%. [c.143]

    Анализ самого белка показал, что он принадлежит к группе протеинов (простых белков) и по своим химическим свойствам относится к глобулинам 3. Из аминокислот при расщеплении глобина были обнаружены лейцин, валин и гистидин [c.165]

    ПЕРВИЧНАЯ СТРУКТУРА белка, последовательность аминокислотных остатков в полипептидной цепи. В П. с., закодированной в соответствующем данному белку структурном гене, заложено все необходимое для ее самоорганизации в глобулу с определенной пространств, структурой. П. с. определяет вторичную и третичную структуры белка. Методы ее установления хорошо разработаны полипептидную цепь специфически расщепляют протеиназами (трин-сином — по остаткам аргинина и лизина, химотрипсином — по остаткам аром, аминокислот и лейцина) или хим. методами (бромцианом по остаткам метионина) в полученном наборе перекрывающихся пептидных фрагментов определяют последовательность аминокислот, используя преим. ступенчатое расщепление по Эдману (процесс автоматизирован), и сопоставляют строение фрагментов. [c.429]

    Определение числа пептидных цепей в белке путем количественного измерения скорости отщепления аминокислот может оказаться ненадежным, если два соседних аминокислотных остатка отщепляются почти с одинаковой скоростью. Это наблюдается в случае ростового гормона быка, в котором два остатка фенилаланина быстро отщепляются карбоксйпеп-тидазой, после чего происходит отщепление аланина, лейцина и серина. В этом белке имеются два К-концевых остатка, но расщепление гидразином позволило обнаружить только один С-концевой остаток фенилаланина. Полученные при расщеплении белка карбоксйпептидазой результаты объясняются тем, что С-концевой участок имеет состав —Фе.Фе.ОН [198]. [c.234]

    Глицинамид, образующийся при ферментативном расщеплении, должен быть концевым, н структура дипептида IV показывает его связь с остатком лейцина. Таким образом, С-концевая последовательность окисленного окситоцина может быть изображена в виде  [c.695]

    Укажем только на следующее для точного определения аминокислотного состава белка его нужно подвергнуть гидролизу (в вакуумированной запаянной ампуле с 6н. НС1 при температуре 110°) в течение 22 и 70 час [26]. При этом для глицина, аланина, валина, лейцина, изолейцина, метионина (с внесением поправки на 10%-е расщепление при хроматографии), фенилаланина, гистидина и лизина нужно использовать полученное при анализе содержание аминокислоты (в 22- или 70-часовом опыте). В то время как для аспарагиновой и глутаминовой кислоты, серина, треонина, пролина, тирозина и аргинина, которые частично разрушаются при гидролизе (по реакции 1-го порядка), их содержание рассчитывается путем экстраполяции на нулевое время по формуле [c.149]

    Как показали А. Н. Белозерский и Т. С. Пасхина, при длительном гидролизе грамицидина кипящей 20%-ной соляной кислотой происходит расщепление молекулы с выделением пяти аминокислот . /-пролина (1), /-валика (П),. /-орнитина (П1),. /-лейцина (IV) и -фенилаланина (V)  [c.739]

    Короткие последовательности с Л/-конца белков часто идентифицируют, используя ферментативную деградацию. Промышленность производит несколько аминопептидаз, отличающихся специфичностью. Лейцинаминопептидаза из почек свиньи, как следует из ее названия, гидролизует преимущественно лейцин и сходные аминокислоты с гидрофобными боковыми группами. Несмотря на то, что скорости расщепления, Л/-концевых аминокислот лежат в широких пределах, гидролиз желательно продолжать до конца, за исключением аминокислоты, предшествующей пролину. Вследствие столь широкого изменения скоростей расщепления следует соблюдать осторожность при интерпретации результатов анализа деградации, катализируемой этим ферментом. Чрезвычайно важно отбирать пробы для анализа в течение деградации. Например, при анализе белка с Л/-концевой последовательностью А1а-Ьеи-Ьеи. .. на ранних стадиях деградации выход аланина превышает выход лизина, однако при большом времени гидролиза соотношение меняется на обратное [24]. Другой фермент, выделенный из почек свиньи, ами-нопептидаза М, гораздо менее специфичен и, по-видимому, более пригоден для расщепления белков. [c.271]


    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]

    Дальнейшая судьба углеродного скелета у разных аминокислот различна. Лишь немногие продукты дезаминирования (пировиноградная, 2-оксоглутаровая, щавелевоуксусная кислоты) являются одновременно промежуточными продуктами центральных путей катаболизма. Другие углеродные скелеты через специальные катаболические пути вовлекаются в промежуточный обмен. Мы не ставили здесь задачу охарактеризовать все изйестные пути распада. В качестве типичного примера на рис. 14.15, представлен путь расщепления лейцина. Особого внимания заслуживает здесь З-гидрокси-З-метилглутарил-СоА-важный промежуточный продукт в синтезе стероидов и каротиноидов. [c.433]

    Наряду с трипсином из яоджелудочной железы выделяют другую сериновую протеиназу — химотрипсин. Используемый для структурных исследований а-кимотрипсин А проявляет максимальную активность в диапазоне pH 7,8 — 9,0. Химотрипсин обладает гораздо более широкой специфичностью, чем трипсин. Фермент преимущественно катализирует гидролиз пелтидиык связей, образо< ванных карбоксильными группами ароматических аминокислот — тирозина, фенилаланина и триптофана. С меньшей скоростью гидролизуются пептидные связи лейцина, метионина, гистидина. Скорость расщепления отдельных связей в белках и пептидах зависит от характера соседних аминокислотных остатков. [c.45]

    Сорбция субстрата в активном центре а-Х, обеспечивается гвдрофобной полостью. Ее размеры 1,0x0, 5x0,4 нм оптимальны для связывания боковых цепей остатков гвдрофобных аминокислот (триптофан, фенилаланин, лейцин, тирозин), а конфигурация допускает лишь определенную ориентацию субстрата. Механизм каталитич. гвдролиза включает стадию сорбции субстрата, расщепления пептвдной связи с образованием ацилфермента и послед, переноса ацильной фуппы на нуклеоф. акцептор. [c.263]

    Тест Фуджино [387]. Тестовая система основана на взаимодействии Bo -Ala-Met-Leu-OH с ре/и-бутиловыми эфирами лейцина, изолейцина или же с (3-/ире/и-бутиловым эфиром аспарагиновой кислоты с последующим расщеплением бромцианом и определением соотношения диастереомеров прн помощи аминокислотного анализатора  [c.177]

    Для животного организма витамин Вс является важнейшим витамином, входящим в состав ферментов, катализирующих белковый обмен он выполняет важную функцию в превращениях аминокислот. Для каждого животного организма необходимо получать с пищей некоторые аминокислоты (например, для человека незаменимы валин, лейцин, нзолейшш, лизин, треонин, метионин, фенилаланин, триптофан), которые он не в состоянии синтезировать все же другие необходимые аминокислоты синтезируются организмом нз продуктов расщепления белков или из а-кетокислот. [c.355]

    Скорость расщепления в безводных средах определялась по содержанию аминного азота, а не по выходу ФТГ-производного. Хроматографирование на бумаге показало, что соединение, быстро образующееся из ФТК-лейцилглицина, представляет собой не лейцин-ФТГ, а 2-анилино-4-изобутил-тиазолинон-5 с максимумом поглощения при 252 ммк (см. схему на стр. 239). Нагревание (например, при перекристаллизации) оказывается достаточным, чтобы это соединение превратилось в лейцин-ФТГ. С другой стороны, в безводной кислой среде ФТК-лейцилглицин непосредственно превращается в лейцин-ФТГ, в то время как в водной среде это превращение проходит через стадию образования ФТК-лей-цина и с гораздо меньшей скоростью. Таким образом, различие в скоростях расщепления в водных и безводных средах невелико, но скорости циклизации в ФТГ-производные в этих двух системах заметно отличаются. [c.243]

    Расщепление на оптические изомеры при помощи карбо-бензилокси-анилино-папаинового метода Бергмана [4] описано при синтезе /-лейцина-1-С .  [c.315]

    Рис 10 А экспорт белка через мембрану путем котрансляционной секреции (1 —рибосомы 2 — мембрана 3 — пора в мембране 4 — сигнальная последо вательность 5 — сигнальный пептид 6 — рецептор сигнального пептида 7 — сайт действия сигнальной эндопептидазы 8 — рецептор рибосомы) Б — строение сигнального пептида белка lam В Es hen hia oh (А — гидрофильный сегмент Б — гидрофобный сегмент р сайт расщепления последовательность а лнокислот 1—метионин 2 — изолейцин 3 — треонин 4 — лейцин 5 — аргинин 6 — лизин 7 — аланин 8 — валин 9 — глицин 10 — серии И — глутамин 12 — пролин) С — секреция белка через мембрану (М) по типу петли (1 —NH2 конец 2 — гидрофобный участок СП — сигнальная пептидаза) [c.58]

    Расщепление ферментных белков протеолитическими ферментами чаще всего ведет к потере активности. Однако не менее чем в четырех случаях удалось отщепить заметную часть белка без значительных изменений активности. Так, при автолизе пепсина были найдены низкомолекулярные (диализируемые) пептиды, сохранившие часть активности. От молекулы папаина было отщеплено 109 аминокислотных остатков из 185, причем активность сохранилась. Подобный же результат был получен при частичном гидролизе фосфопируват-гидратазы (с помощью лейцин-амино-пептидазы с N-конпа) и т. д. Подобные эксперименты, несомненно, позволят подойти к выделению и расшифровке активных участков ферментных белков. [c.76]

    Молекулярный вес окситоцина равен 1007. В результате гидролиза получаются по 1 молю следующих аминокислот, относящихся к ряду L цистина, тирозина, изолейцина, глутамина, аспарагина, пролина, лейцина и гликоколя. Окситоцин представляет собой нонапептид (если считать цистин за два остатка цистеина). В результате расщепления окситоцина на более простые пептиды был установлен способ связывания этих аминокислот в молекуле они образуют единую пептидную цепь, обладающую одним цистеииовым остатком у одного конца и остат- [c.412]

    Лейцинаминопептидаза, активируемая ионами магния или марганца, обладает эстеразной и пептидазной активностями и гидролизует большое число субстратов. Субстраты, в молекуле которых имеется асимметрический а-углеродный атом, должны иметь L-конфигурацию. Как показывает само название фермента, гидролиз протекает наиболее быстро, когда N-концевое ноложение в молекуле субстрата занимает лейцин. Относительные скорости расщепления разных субстратов мало зависят от природы активирующего иона. [c.430]


Смотреть страницы где упоминается термин Лейцин расщепление: [c.385]    [c.991]    [c.496]    [c.429]    [c.475]    [c.116]    [c.113]    [c.344]    [c.17]    [c.357]    [c.357]    [c.372]    [c.475]    [c.405]    [c.432]    [c.208]    [c.337]    [c.384]    [c.32]    [c.63]   
Биохимия растений (1966) -- [ c.429 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2025 chem21.info Реклама на сайте