Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Многоклеточные

    Развитие многоклеточных эукариотических организмов основано на способности клеток передавать в ряду поколений активное или, наоборот, репрессированное состояние гена. Наследование состояния гена приводит в конечном итоге к образованию дифференцированной ткани, состоящей из клеток, в которых лишь небольшая часть генов активирована на фоне репрессии основной части генома. Исследование молекулярных механизмов, обеспечивающих наследование активного или неактивного состояния гена в ряду клеточных поколений, представляется чрезвычайно важным. По-видимому, в основе этих механизмов лежат не только программированные взаимодействия белков и ДНК, обеспечивающие наследуемую локальную организацию хроматина, но и процессы метилирования ДНК. Метилирование можно расс.матривать как особый механизм контроля транскрипции, существующий наряду с механизмами, основанными на взаимодействиях между цис-действую-щими регуляторными элементами и факторами транскрипции. [c.218]


    Есть хорошо известный эксперимент если губку, примитивное многоклеточное животное, расчленить до отдельных клеток, а затем оставить суспензию этих клеток в покое, то через некоторое время они вновь объединятся в многоклеточный организм. Если смешать суспензии клеток из губок двух различных видов, то при их объединении само- [c.155]

    Гем, или порфирин железа, входит также в активные центры ферментов, таких, как пероксидаза и каталаза. Многие другие переходные металлы также являются важнейшими участниками ферментативного катализа некоторые из них будут обсуждены в гл. 21. В результате появления миоглобина и гемоглобина были сняты ограничения на размеры живых организмов. Это привело к появлению разнообразных многоклеточных организмов. Поскольку переходные металлы и органические циклические системы с двойными связями, подобные порфиринам, чрезвычайно приспособлены к поглощению видимого света, а их комбинации проявляют разнообразные окислительно-восстановительные свойства, жизнь можно рассматривать как одну из областей, где протекают процессы координационной химии. [c.262]

    Программы развития у многоклеточных организмов [c.360]

    К макроорганизмам относят многоклеточные организмы, видимые невооруженным глазом. Это растения (зеленые водоросли) или животные (губки, мшанки, моллюски и др.). [c.45]

    Представление об основных биохимических процессах, происходящих в клетках, на примере сапрофитных микроорганизмов с аэробным типом питания [2], дает упрощенная схема метаболизма на рис. 1.2. Даже в таком упрощенном виде схема позволяет оценить многообразие и сложность внутриклеточных процессов, насчитывающих несколько тысяч реакций, в результате которых синтезируются клеточные вещества. Математическое описание всей совокупности данных реакций и использование такой модели для практических целей представляет собой чрезвычайно сложную задачу. Наряду с микробиологическими процессами, направленными на образование биомассы микроорганизмов или ценных продуктов клеточного метаболизма большую роль в БТС занимают процессы биологической очистки, протекающие с участием бактериальных клеток по следующей трофической схеме органические загрязнениям бактерии-> простейшие. В процессе биологической очистки сточных вод, содержащих органические и минеральные вещества, формируется биоценоз активного ила, включающий бактерии, простейшие и многоклеточные организмы. В процессе потребления органических загрязнений происходит интенсивный рост бактерий и ферментативное окисление органических веществ. По мере удаления из среды питательных веществ происходит эндоген- [c.10]


    История металлопорфириновых комплексов на этом еще не заканчивается. К знаменитому закону Паркинсона можно было бы добавить еще один подпункт организмы развиваются, чтобы приспособиться к имеющимся источникам пищи. Когда появились новые источники энергии, стали развиваться многоклеточные организмы. Но при этом возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться просто диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда. [c.260]

    Пектиновые вещества широко представлены как в многоклеточных растениях, так и в одноклеточных альгах. Они склеивают отдельные волокна растительного материала. Кроме гого, пектиновые вещества, благодаря способности связывать воду и набухать в ней, по-видимому являются основными носителями запасов воды в растениях. [c.32]

    Биологические процессы на уровне одной клетки или на уровне более сложных многоклеточных форм составляют наиболее трудные и привлекающие внимание проблемы химии и химической кинетики. Из огромного количества работ, которые были выполнены с целью выяснения элементарных кинетических закономерностей в биологических процессах, можно сделать некоторые выводы. Один из них состоит в том, что, за исключением простой ионизации, большинство отдельных стадий в биохимических процессах катализируется большими молекулами, называемыми ферментами. Каталитическая активность ферментов обусловлена наличием особых простетиче-ских групп. Кроме того, в состав их молекул входят белковые остатки, которые составляют большую часть молекулы. Молекулярный вес ферментов определяется в основном молекулярным весом входящего в их состав белкового остатка. [c.561]

    Наряду с одноклеточными формами встречаются нитчатые формы, многоклеточные организмы (рис. 69). [c.244]

    По своему строению водоросли могут быть одноклеточными, многоклеточными и колониальными формами. Некоторые из них имеют клетку без плотной оболочки и лишь с уплотненным внешним слоем протоплазмы, вследствие чего обладают способностью изменять свою форму. Другие же характеризуются плотной оболочкой, большей частью состоящей из целлюлозы. Часто в состав оболочки входят пектиновые вещества. У некоторых групп оболочка сильно пропитана известью или кремнеземом. Одни клетки содержат одно или несколько ядер, другие типичного ядра не имеют, лишь в протопласте заметна окрашенная периферическая часть и неокрашенное центральное тело. У некоторых водорослей красящие вещества находятся в особых плазменных телах различной формы, которые называются хроматофорами. Большей частью в хроматофоры бывают включены плотные тельца — пиреноиды, богатые белковыми веществами. Вокруг пиреноидов отлагается крахмал, являющийся одним из продуктов ассимиляции. Запасными питательными веществами служат масла, жиры, лейкозин, маннит и глюкоза. [c.269]

    Гормонами называются соединения, образующиеся в эндокринных железах (т. е. в железах внутренней секреции, например в надпочечнике, гипофизе, поджелудочной железе, половых железах) и выделяемые в систему кровообращения. Они управляют активностью различных клеток многоклеточных организмов. Это проявляется, например, в регулировании и взаимосвязи различных физиологических процессов, а для некоторых гормонов — ив настроении и стремлениях животных [например, повышение уровня адреналина (разд. 9.5.3) в крови в случае опасности]. Каждый гормон обладает специфическим физиологическим действием например, один гормон вызывает повышение кровяного давления, другой влияет на определенный тип метаболических процессов и т. д. Особо важное положение среди эндокринных желез-занимает гипофиз, гормоны которого управляют деятельностью остальных желез внутренней секреции. [c.191]

    Регуляция экспрессии генов эукариот лежит в основе програ.ммы развития многоклеточных организмов. В начале XX в. благодаря работам Т. Моргана и Э. Вильсона стало очевидным, что развитие программируется генами. Поэтому один из подходов к пониманию закономерностей высокоупорядоченного процесса развития состоит в выявлении генов, контролирующих ключевые стадии развития. [c.212]

    Регуляция жизнедеятельности сложного многоклеточного организма в огромной степени зависит от химических сигналов, передаваемых от одних клеток к другим. Один из основных способов коммуникации — это секреция гормонов в кровоток. Значительно менее изучен процесс химического обмена информацией через межклеточные контакты (гл. 1, разд. Е, 3, в). Этот процесс лучше всего исследован на нервных клетках, и в настоящее время нейрохимия стала одним из основных направлений биохимии. Коммуникация между клетками играет большую роль в эмбриональном развитии и в дифференцировке тканей. Правда, рост и развитие клеток регулируются не только внешними, но и внутренними факторами последние определяются программами развития, закодированными в ДНК. В настоящей главе мы рассмотрим кратко как упомянутые вопросы, так и коммуникацию между организмами, т. е. биохимию экологических взаимосвязей. [c.316]


    Общая, или гомологичная, рекомбинация характерна для всех живых организмов от вирусов и бактерий до многоклеточных эукариот. При гомологичной рекомбинации происходит обмен участками между гомологичными, т. е. очень похожими по последовательности, лтолекулами ДНК- Так, к сбщей рекомбинации относятся обмены между гомологичными хромосомами в мейозе у эукариот и рекомбинационная инициация репликации ДНК бактериофага Т4 (см. гл. ХП1). В первом приближении можно сказать, что гомологичная рекомбинация не создает принципиально новых последовательностей, а перетасовывает уже имевшиеся сходные варианты одной и той же последовательности (рис. 51). Чтобы подчеркнуть важность этого свойства, достаточно сказать, что при гомологичной рекомбинации между двумя сходными генами, кодирующими белок, оба рекомбинантных продукта оказываются не нарушенными, не происходит, например, сдвига рамки считывания, Другими словами, при гомологичной рекомбинации каким-то образом обеспечивается взаимное узнавание одинаковых (или очень сходных по последовательности) участков рекомбинирующих. молекул. Если же го.чологии нет, то и рекомбинация такого рода происходить не будет. [c.84]

    Сине-зеленые водоросли СуапорНусеае) (ряс. 89) — одно- или многоклеточные организмы, характеризуются особым строением клетки. В ней нет типичного ядра и хроматофоров. Протопласт сине-зеленых водорослей дифференцирован на периферически окрашенный слой (хроматоплазма) и центральную часть (центроплазма). Ассимилирующие пигменты—хлорофилл, фико-цин, фикоэритрин и каротин. В ячеях лежат особые тельца —эндопласты плотной или вязкой консистенции. В плазматических стенках ячей между эндопластами находится хроматиновое вещество , красящееся ядерными красками. [c.271]

    В течение всего фанерозоя видовой состав биомассы постоянно менялся. По данным С.П. Максимова, Т.А. Ботневой, В.Л. Мехтиевой и др. в отложениях венда обнаружены различные бесскелетные многоклеточные кишечнополостные, кольчатые черви, членистоногие, иглокожие, погонофоры. [c.187]

    Насколько сейчас известно, наша планета образовалась приблизительно 4,6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3,5 миллиарда лет. Уже 3,1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера приобрела окислительный характер лишь 1,8-1,4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились приблизительно от 1000 до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционизирующим шагом, после зарождения самой жизни, было использование внепланетного источника энергии, Солнца. В конечном итоге это превратило жалкие ростки жизни, которые утилизировали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за ее пределы. [c.337]

    Адсорбция газов и паров обусловливает и сопровождает многие промышленные и природные процессы. Так, адсорбция компонен тов является важнейшей стадией любой гетерогенной реакции, например, в системе газ — твердое тело, так как твердая фаза может обмениваться веществом только с адсорбированным слоем. Ог ромную роль адсорбция играет в гетерогенном катализе, когда на поверхности катализатора происходит концентрирование компонентов, определенное ориентирование их молекул, соответствующая поляризация или вообще переход в наиболее активное состояние, форму, что способствует ускорению превращения вещества. Питание растений диоксидом углерода из воздуха связано q предварительной и обязательной стадией адсорбции газа на листьях. Дыхание животных и человека, заключающееся в поглоще НИИ из воздуха кислорода и выделении диоксида углерода и водяных паров, протекает также благодаря предварительной адсорбции кислорода на поверхности легких. Общая площадь поверхности легочных альвеол у человека составляет в среднем 90 м . У одноклеточных и некоторых многоклеточных животных, например у плоских червей, дыхание осуществляется всей поверхностью тела. [c.146]

    В биологии также встречаются примеры фракционирования живых клеток организма, например, у губок - наиболее примитивных многоклеточных, животных. Они состоят из клеток всего пяти или шести типов. Губку мож-но разделить на отдельные клетки, осторожно продавив взрослый организм через мелкое сито. Эти клетки быстро снова агрегируют, и в конце концов такой агрегат реорганизуется в нормальную губку. В классическом опыте такого рода смещивали клетки двух видов губок разного цвета. Клетки слипались, образуя раздельные агрегаты одного и другого цвета (рис. 11), Хотя этот результат можно получить не со всеми видами губок, он показывает, что некоторые клетки взрослой губки способны отличать клетки своего вида от чужих [24]. [c.22]

    Основной вопрос, касающийся интерпретации Беркнера и Маршалла, следующий имели ли эволюционные события причинно-следственную связь с атмосферными изменениями, которые несомненно происходили Если да, то мог ли действовать некий механизм обратной связи типа постулированного для Геи (см. выше), так как эволюция атмосферы шла опосредованно через биосферу. Характерная проблема, встречающаяся во взаимосвязанной биологической и атмосферной эволюции, иллюстрируется формированием раковин многоклеточных организмов. Поскольку раковины относительно непроницаемы для кислорода, организмы с раковиной нуждаются в растворенном кислороде, который должен быть в равновесии с концентрацией больше 10 САУ в атмосфере. Поэтому критический уровень Оз для биологической защиты был превзойден, когда организмы появились во множестве в кембрийском периоде (570 млн. лет назад). Однако жизнь, по-видимому, недостаточно твердо удерживалась на суше в течение последующих 170 млн. лет (до конца силурийского периода). Таким образом, существует возможность, что озоновый экран мог уже сформироваться перед силурийским периодом и что он не был непосредственно связан с распространением жизни на сушу. Реше- [c.214]

    Способность генетического материала, ДНК, к самовоспроизЬеде-нию (репликации) лежит в основе размножения живых организмов, передачи наследственных свойств из поколения в поколение и развития многоклеточного организма из зиготы. Настоящая глава посвящена молекулярным механизмам самовоспроизведения ДНК  [c.44]

    Рекомбинация может происходить между гомологичными генами соматических клеток многоклеточных или при вегетативном росте одноклеточных эукарнот. Частота этой рекомбинации очень невелика, поскольку такая, митотическая, рекомбинация может сопровождаться нежелательными последствиями (например, возникновением мозанцизма). Большинство случаев митотической рекомбинации, по-видимому, связаны с репарацией. Действительно, митотическую рекомбинацию можно существенно стимулировать, повредив ДНК, например облучением. [c.95]

    У высших многоклеточных эукариот (насекомых, позвоночных) в пределах 100—200 п. н. перед стартом транскр.чпции (рис. 111, б) была выявлена более сложная мозаика промоторных элементов, представленных короткими нуклеотидными последовательностями ( мотивами )). На расстоянии 27—.30 п. н. от кэя-сайта расположен ТАТА-мотив, усредненный вариант которого (так называемый соп- [c.198]

    Подобные регуляторные элементы, получившие название эихансе-ров (усилителей), широко распространены в генах многоклеточных эукариот, причем в отличие от генов дрожжей нх действие осуществляется не только в положениях перед стартом транскрипции, но и сохраняется при перемещении в З -район гена. Оказалось, что ряд из вышеупомянутых нуклеотидных мотивов, обычно обнаруживаемых в промоторном районе, обладают свойствами энхансеров. [c.203]

    Значительная часть одноклеточных и многоклеточных микроорганизмов принимает активное участие в процессах разрушения материалов конструкций и сооружений. Они стимулируют известные процессы коррозии металлов и старения полимеров, а отдельные виды могут вызывать специфические разрущения — био-поВ )е>.чления. -------------- ----------------------------- [c.5]

    Клетки грибов имеют сильно вытянутую форму и поэтому на поминают нити — гифы, толщина которых 1...15 мкм. Гифы вет вятся и переплетаются, образуя мицелий или грибницу (рис. 8) Грибы могут быть одноклеточные — без перегородок (не септиро ваны) или многоклеточные — с перегородками (септированы) Мицелий развивается на поверхности субстрата, часть его прони кает в субстрат. В этом случае происходит специфическое разру шение материала [2]. [c.12]

    Химические вещества проникают в листья, корни и в отдельные клетки растений чрезвычайно легко и оказывают влияние на самые различные его функции, что сказывается на росте и развитии чрезвьгчайно разнообразно. Химические системы служат главными регуляторалхи роста и развития растений, а рост и функции отдельных клеток мноп)клеточного организма растения в гшачительной мере определяются особой молекулярной средой, которая возникает в результате динамического обмена химическими сигналами между клетками. Именно этот обмен сигналами и делает возможной регу ляцию функций всего многоклеточного организма [4]. [c.56]

    Гормоны характерны для многоклеточных организмов. Одноклеточные организмы в них не нуждаются. Благодаря гормонам осуществля- [c.418]

    Вопрос, однако, в том, что, собственно, будет отражать такая структура. Она не только не отвечает характеристикам биополимера в том виде, в каком он функционирует в живой клетке, но даже неспособна характеризовать отде.пьный компонент смеси, составляющей реальный биополимер. Более того, значительные вариации структурных характеристик полисахаридных цепей существуют, по-видимому, и для различных представителей данного биологического вида, и для различных клеток одного многоклеточного организма, и для данного организма или данной клетки на разных стадиях развития или в различных условиях существования. В этом смысле на углеводные биополимеры закон постоянства состава не распространяется. [c.109]

    Если животные клетки в подходящей искусственной среде поместить на твердую поверхность (например, на дно чашки Петри), то их деление будет происходить упорядоченно на поверхности растет одноклеточный слой, а после того, как вся она будет покрыта клетками, деление практически прекращается — наступает так называемое контактное торможение. В этом эксперименте проявляются в сильно упрощенном виде те явления, которые определяют постоянство размеров и формы органов и всего взрослого многоклеточного организма. По-иному ведут себя в таких экспериментах раковые клетки они образуют бесформенную клеточную массу, их деление не приостанавливается после заполнения поверхности одноклеточным слоем. В отсутствии такого торможения заключена главная причина злокачественности — бесконтрольного роста опухоли. Целостность нормального органа поддерживается прочными межклеточными связями. В опухолях эти связи значительно слабее отдельные их клетки легко отделяются от основной массы, уходят в кровяное русло и разносятся по всему телу. В этом первопричина мета-стазирования — второй грозной особенности злокаче-ственных опухолей. [c.156]

    Гумусовые и сапропелевые угли. Различают два крайних типа углей гумусового и сапропелевого происхождения. Они отличаются друг от друга как характером углеобразовате-лей (той части материнского вещества, которая переходит номере преобразования в угольную массу , так и условиями естественной переработки. Материнским веществом гумусовых углей признается ежегодно отмирающая органика высокоорганизованных многоклеточных наземных растений, если ей удается избежать полного уничтожения за сч бт быстро протекающих биохимических процессов, идущих в присутствии кислорода воздуха аэробные процессы тления и перегнивания, протекающие в почве (гумусе) сухих, незаболоченных лесов. В отличие от этого отмирающая органика заболоченных скоплений высокоорганизованной [c.28]

    Прежде чем обсуждать вопрос о дифференцировке сложных многоклеточных организмов, полезно рассмотреть более примитивные формы— одноклеточные и колониальные. В благоприятных условиях клетки бактерий и эукариот одинаковым образом вступают в фазу роста и деления (рис. 15-25), которая составляет основу экспоненциального роста [уравнение (6-60)]. Однако изменение внешних условий быстро меняет характер жизнедеятельности клеток. Так, недостаточность питательного субстрата не только уменьшает скорость роста, но и влияет на транскрипцию генов. У Е. oli это происходит в результате увели- [c.352]

    Многоклеточные организмы наряду с рассмотренными внутриклеточными механизмами имеют надклеточные-гормональные механизмы регуляции О.в. Гормональная регуляция координирует О.в. в разл. тканях и органах и интегрирует его в рамках организма в целостную систему. Гормональная регуляция О.в. у растений осуществляется группой фитогормонов, напр, ауксинами и гиббереллинами. Гормональную регуляцию О.в. у животных осуществляет эндокринная система, источниками гормонов в к-рой являются центр, и переферич. железы внутр. секреции. Характер управляющих связей в этой системе иллюстрирует механизм поддержания концентрации глюкозы в крови на постоянном уровне. Так, повышение концентрации глюкозы в крови увеличивает продукцию инсулина, к-рый стимулирует клетки на усиленное потребление глюкозы. Возникающий при этом дефицит глюкозы приводит к увеличению продукции др. пептидного гормона-глюкагона, к-рый стимулирует восстановление концентрации глюкозы благодаря расщеплению гликогена в клетках. [c.317]

    Эукариотич. клетки реагируют на внеш. сигналы (для них это, напр., гормоны) в принципе так же, как бактериальные клетки реагируют на. изменения концентрации питат. в-в в окружающей среде, т.е. путем обратимой репрессии или активации (дерепрессии) отдельных генов. При зтом Р. б., одновременно контролирующие активность большого числа генов, могут использоваться в разл. комбинациях. Подобная комбинационная генетич. регуляция может обеспечивать дифференцир. развитие всего сложного многоклеточного организма благодаря взаимод. относительно небольшого числа ключевых Р. 6. [c.218]

    Скорость Т. разл. генов может отличаться в тысячи раз в столь же больших пределах может изменяться скорость Т. одного и того же гена в разных тканях многоклеточного организма или в одной клетке в зависимости от изменяющихся внеш. условий или внутр. программы. На стадии иншщации регуляция Т. осуществляется благодаря наличию особых белков-регуляторов (см. Регуляторные белки), способных присоединяться к определенным участкам ДНК и тем самым препятствовать или помогать РНК-полимеразе инициировать синтез РНК на промоторе. [c.620]


Смотреть страницы где упоминается термин Многоклеточные: [c.187]    [c.54]    [c.242]    [c.215]    [c.234]    [c.5]    [c.12]    [c.13]    [c.148]    [c.156]    [c.29]    [c.299]   
Происхождение жизни Естественным путем (1973) -- [ c.146 , c.185 , c.196 , c.236 , c.361 ]




ПОИСК





Смотрите так же термины и статьи:

Археспорий многоклеточный

В многоклеточном организме разные клетки делятся с весьма различными скоростями

В основе многоклеточной организации лежит взаимодействие клеток

В самосборке многоклеточных образований участвуют межклеточные носители информации

Деление клеток I у многоклеточных

Деление у многоклеточных

За объединение амеб слизевика в многоклеточное скопление ответственны хемотаксис и специфическая клеточная адгезия

Как многоклеточный организм противодействует воздействию среды и избегает гибели

Клонирование многоклеточных организмов

Межклеточные коммуникации определяют пространственное строение многоклеточных организмов Клеточная память позволяет развиваться сложным формам

Многоклеточные животные

Многоклеточные организмы

Многоклеточные организмы, возникновение

Многоклеточные организмы, возникновение Многопроходные белки

Многоклеточные растения

Многоклеточный организм, старение

Неравномерный рост у многоклеточных организмов

Организм многоклеточный, эволюция

Особенности развития разных многоклеточных

От клеток - к многоклеточным организмам

От клеток к многоклеточным организмам Половые клетки и оплодотворение

Патентование многоклеточных организмов

Половое размножение многоклеточных животных и растений

Программы в многоклеточных организмах

Программы развития у многоклеточных организмов

Прокариоты многоклеточные

Размножение многоклеточных

Размножение многоклеточных животных

Регуляция клеточного деления у многоклеточных организмов

Рост многоклеточных организмов

Стадия сложных многоклеточных организмов

У многоклеточных животных диплоидная фаза бывает сложной и продолжительной, а гаплоидная - простой и кратковременной

Цианобактерии формирование многоклеточности

Эволюция от клеток к многоклеточным организмам

Эмбриональное развитие и дифференцировка у многоклеточных организмов

Эукариоты одноклеточные и многоклеточные



© 2024 chem21.info Реклама на сайте