Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория валентных связей молекулярных орбиталей Хюккеля ХМО

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    Важная роль принадлежит двум квантовомеханическим методам теории молекулярных орбиталей (Р. Малликен, Э. Хюккель и др.), полное название этого метода Линейная комбинация атомных орбиталей — молекулярные орбитали или сокращенно ЛКАО — МО, и методу валентных связей — ВС (Л. Полинг), развитому в используемом в органической химии методе резонанса. Оба метода яв- [c.20]

    Большинство книг о химической связи следует хронологическому принципу изложения. Вначале вводят два основных ме тода теории валентности метод молекулярных орбиталей и метод валентных схем, которые сначала применяют к простым системам типа и Нг, математически строгое рассмотрение которых было возможно даже в 30-е годы. Далее обычно переходят к обсуждению эмпирических теорий, таких, как теория Хюккеля и теория поля лигандов, и в зависимости от уровня, на котором написана книга, в ней излагают некоторые более усовершенствованные эмпирические и неэмпирические теории, развитые в последние годы. Именно в этом стиле написана наша книга Теория валентности , опубликованная в 1965 г. [c.9]

    Важная роль принадлежит двум квантовомеханическим методам теории молекулярных орбиталей (Р. Малликен, Э. Хюккель и др.), полное название этого метода Линейная комбинация атомных орбиталей — молекулярные орбитали или сокращенно ЛКАО — МО, и методу валентных связей — ВС (Л. Полинг), развитому в используемом в огранической химии методе резонанса. Оба метода являются приближенными, и при решении конкретной задачи используется метод, наиболее подходящий для данного случая. Так, метод молекулярных орбиталей дает более естественное описание сопряженных молекул. [c.18]

    Начало одному из методов было положено работой В. Гейтлера и Ф. Лондона (1927). Они впервые объяснили природу сил в молекуле водорода. В 30-х годах эти идеи были развиты Слейтером и Полингом для многоатомных молекул. Их представления получили название — спиновая теория валентности, или метод электронных пар. Параллельно с указанным плодотворно развивается другой подход к объяснению ковалентной связи, получивший название метода молекулярных орбиталей (Гунд, Милликен, Хюккель, Леннард-Джонс, Коулсон). [c.87]

    В молекулах, состоящих из атомов типичных элементов, каждый атом имеет четыре валентные орбитали. В плоских я-электронных системах каждый атом вносит в общую я-си-стему вклад в виде только одной р-орбитали. Остальные его валентные орбитали принимают участие в образовании а-си-стемы связей. Следовательно, базисный набор для молекулярных я-орбиталей оказывается намного меньше полного валентного набора. Отдельное рассмотрение я-электронной системы обосновано тем, что молекулярные я-орбитали являются высшими (по энергии) занятыми и низшими вакантными молекулярными орбиталями. Кроме того, по законам симметрии, одноэлектронные интегралы между базисными функциями а- и я-типов равны нулю. Спектральные переходы с минимальными энергиями, первые потенциалы ионизации, а также сродство к электрону я-систем связаны с энергиями именно я-орбиталей. Химические реакции, в которых участвуют такие системы, обычно сопровождаются значительно большими изменениями в я-си-стеме, 1ем в а-системе. Простая теория Хюккеля позволяет получить много полезных сведений о химических свойствах я-электронных систем. [c.240]


    Совместно с Дебаем разработал (1923) теорию сильных электролитов (теория Дебая — Хюккеля). Занимался применением законов квантовой механики к решению химических проблем, в частности расчетами волновых функций и энергий связей в органических соединениях. Объяснил (1929—1930) природу двойной связи в ненасыщенных и ароматических соединениях. Использовал (1931—1934) методы молекулярных орбиталей и валентных схем для расчета сопряженных систем в органических соединениях, показав, что метод молекулярных орбиталей более предпочтителен. Выдвинул (с 1930) объяснение устойчивости ароматического секстета на основе метода молекулярных орбита-лей (правило Хюккеля) плоские моноциклические сопряженные системы с числом я-электронов, равным 4п-+-2, будут ароматическими, тогда как такие же системы с числом я-электронов, равным 4 , будут неароматическими. Правило Хюккеля применимо как к заряженным, так и к нейтральным [c.548]

    Распределение спиновой плотности в этих ионах успешно объясняется методом молекулярных орбиталей (МО) Хюккеля. Согласно теории МО, каждый атом углерода имеет три хр -гибридные орбитали, которые образуют а-связи с другими атомами углерода и водорода в плоскости молекулы. Все, кроме одного, валентные электроны на каждом атоме углерода используются для образования относительно инертных простых связей углеродного скелета. Остающиеся я-электроны по одному от каждого атома углерода движутся свободно по всему углеродному скелету. Такая модель объясняет наиболее интересные химические свойства сопряженных молекул. [c.117]

    Большие изменения произошли в изложении квантовой химии и теории химической связи в переводной и отечественной литературе и в преподавании теории строения вещества. Поэтому нам представлялось бесцельным повторно знакомить студентов III курса с качественными представлениями теории валентных связей и электронным строением молекул (форма электронных орбиталей, гибридизация, направленные валентности и др.), изучаемыми ими на I курсе. В то же время в ряде переводных и отечественных учебных пособий появилось вполне доступное изложение приближенных методов расчета молекул, основанных на методе молекулярных орбиталей метод молекулярных орбиталей в приближении Хюккеля (МОХ), теория кристаллического поля, теория поля лигандов и др. В связи с этим изложены количественные квантовохимические расчеты на основе строгого решения уравнения Шрёдингера для атома водорода (введение трех квантовых чисел п, I и [c.3]

    Интересно сравнить приведенные в этом разделе величины энергии резонанса и дробных порядков связей с соответствующими данными, полученными в теории молекулярных орбита-лей Хюккеля. В рамках теории молекулярных орбиталей фульвен характеризуется энергией резонанса 1,4ббр, а азулен— энергией резонанса 3,364 3. Энергии резонанса соответствующих изоэлектронных молекул бензол 2,00(3, нафталин 3,683р. Ясно, что теория молекулярных орбиталей Хюккеля предсказывает примерно такую же стабильность фульвена и азулена, какая характерна для бензола и нафталина. Это полностью противоречит и результатам теории валентных связей и данным эксперимента, касающимся фульвена и азулена. На рис. 21 указаны заряды и порядок связей, полученные при рассмотрении фульвена и азулена методом молекулярных орбиталей по Хюккелю. Из сопоставлен1гя можно сделать один интересный вывод общая для двух колец связь в азулене, которая имела наинизший [c.77]

    В то же время, когда разрабатывалась теория валентных связей, Гунд, Леннард-Джонс и Малликен предложили теорию линейных комбинаций атомных орбиталей (ЛКАО). Но наибольший вклад в приложении этой теории к молекулам ненасыщенных соединений, представляющих интерес для химиков, внес Хюккель. Как уже говорилось, уравнение Шрёдингера не может быть точно решено для молекул (атомов), содержащих более одного электрона. Для решения уравнения в этом случае делаются различные допущения и приближения. Хюккель сделал, вероятно, самое смелое допущение, когда стал рассматривать ст-и п-электроны раздельно. Используя теорию молекулярных орбиталей Хюккеля (ХМО), стало возможным рассчитать свойства ненасыщенных. молекул, таких, как этилен, бутадиен и бензол. Однако следует заметить, что полученные приемлемые результаты были до некоторой степени случайны, поскольку, как теперь известно, ошибки при подобных расчетах взаимно уничтожают друг друга. [c.139]

    Классич. теория хим. строения и первонач. электронные представления оказались не в состоянии удовлетворительно описать на языке структурных ф-л строение мн. соед., напр, ароматических. Совр. теория связи в орг. соед. основана гл. обр. на понятии орбиталей и использует молекулярных орбиталей методы. Интенсивно развиваются квантовохим. методы, объективность к-рых определяется тем, что в их основе лежит аппарат квантовой механики, единственно пригодный для изучения явлений микромира. Методы мол. орбиталей в О. х. развивались от тостого метода Хюккеля к валентных связей методу, ЛКЛО-приближению и др. Широко используются представления о гибридизации атомных орбиталей. Этап проникновения орбитальных концепций в О.х. открыла резонанса теория Л. Полинга (1931-33) и далее работы К. Фукуи, Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления хим. р-щга. Теория резонанса до сих пор широко используется в О. X, как метод описания строения одной молекулы набором канонич. структур с одинаковым положением ядер, но с разньтм распределением электронов. [c.398]


    В 50-х годах метод валентных связей стал уступать место методу молекулярных орбиталей (МО) и практически сошел со сцены. Клементи объясняет, почему именно Дело в том, что применение этого метода для рассмотрения достаточно сложных систем с учетом всех электронов совершенно невозможно, несмотря на применение скоростных методов расчета [107, с. 355]. Еще в большей степени сказанное можно отнести к в высшей степени грубому rudest) варианту метода валентных связей —к теории резонанса в ее количественном аспекте. Попытки использовать теорию резонанса в наши ДНИ следует рассматривать лишь как печальный анахронизм , — заключает Дьюар [108, с. 308]. Тем не менее, поскольку в основе теории резонанса лежит функциональная модель, в какой-то степени способная служить в качестве познавательного инструмента, теорию резонанса можно применять, как показывает Херндон [109], для расчетов при использовании даже одних кекулевских структур при этом результаты в некоторых случаях не- будут уступать полученным методом МО в приближении Хюккеля. [c.90]

    Согласно теории молекулярных орбиталей л-электрониых соединений (например, сопряженных углеводородов) (Хюккель, 1931), л-электроны занимают молекулярные орбитали, охватывающие всю молекулу. В сопряженных углеводородах с п углеродными атомами имеется 4л валентных электронов. 3 электронов распределены по орбиталям с р -гибридизацией и участвуют в образовании Зга/2 о-связей между углеродными атомами их можно считать локализованными между парами соседних атомов. л-Электроны движутся над скелетом прочных ст-связей ). Все л-орбитали имеют узловую плоскость, совпадающую с плоскостью ядра. Если бы ядерный каркас подвергался неограниченному растяжению так, чтобы каждый атом оставался в своем гибрндизованном валентном состоянии, а длина всех углерод-углеродных связей неограниченно возрастала, то орбитали сохраняли бы свои характерные свойства симметрии, но взаимодействие между электронами неограниченно уменьшалось бы. В пределе у каждого углеродного атома оказалось бы по одному л-электрону в обычной / -орбитали. Поэтому л-орбитали сопряженной системы можно приближенно выразить линейными комбинациями атомнь ьх 2р-орбиталей. [c.24]


Смотреть страницы где упоминается термин Теория валентных связей молекулярных орбиталей Хюккеля ХМО: [c.86]   
Органическая химия красителей (1987) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность теория

Молекулярные орбитали а- и я-связи

Молекулярные орбитали орбитали

Орбиталь молекулярная

Связь валентная

Связь теория

Теория валентной связи молекулярных орбиталей

Теория валентных связей

Теория молекулярных орбиталей

Хюккель

Хюккеля теория



© 2025 chem21.info Реклама на сайте