Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосома соматические

    Для обеспечения регулируемой тканеспецифической экспрессии рекомбинантных генов в соматических клетках животных и растений в составе векторов используют энхансеры, которые избирательно стимулируют транскрипцию в соответствующих тканях и не оказывают такого действия на гены в тканях, клетки которых не экспрессируют необходимые регуляторные белки. Кроме того, популярным становится введение в экспрессирующие эукариотические векторы пограничных последовательностей нуклеотидов, фланкирующих клонируемые гены, которые помогают обеспечивать экспрессию рекомбинантных генов, сводя к минимуму эффект их положения в хромосомах соматических клеток. [c.111]


    В хромосомных наборах мужчины и женщины есть половые хромосомы. Соматическая клетка мужчины имеет половые хромосомы XV, а женщины— XX. Остальные неполовые пары хромосом, аутосомы, обозначают буквой А у мужчины по морфологии они не отличаются от таких же хромосом у женщины. [c.151]

    Содержание ДНК в расчете на клетку обычно сохраняется постоянным в разных тканях одного организма. Отклонения от этого правила редкие. К ним относятся случаи образования в некоторых типах клеток политенных (многонитчатых) хромосом, образующихся в результате многократной редупликации ДНК без расхождения двуспиральных молекул, а также классические примеры утери ДНК ( диминуция хроматина ) в соматических клетках. Потери участков хромосом, иногда достаточно крупных, составляющих существенную часть материала хромосомы, как правило, касаются гетерохроматических районов. Функциональная значимость образования политенных хромосом и случаев диминуций не ясна. Эти факты лишь подчеркивают правило постоянства содержания ДНК на клетку, которое отражает принцип дифференцировки, основан- [c.185]

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]


    Одно из наиболее поразительных свойств живых существ — это высокая степень мутабильности генов. Вредные мутации уносят многие человеческие жизни в раннем возрасте. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций. Многие мутации могут появляться в результате ошибок репликации ДНК, а также процессов репарации и рекомбинации. Скорость мутирования возрастает в присутствии химических мутагенов, оод влиянием физических воздействий, таких, как, например, воздействие ультрафиолетовым излучением и рентгеновскими лучами, а также при случайном включении вирусной ДНК в хромосомы. [c.289]

    Доказательства генетической роли ДНК в целом неопровержимы. ДНК локализована в хромосомах, причем содержание ДНК в диплоидных (соматических) клетках разных тканей у особей одного и того же вида практически постоянно. В гаплоидных половых клетках количество ДНК вдвое меньше, чем в соматических [22]. Содержание ДНК в клетках удваивается при митозе, т.е. при удвоении хромосом. [c.486]

    Нормальная соматическая клетка содержит два гомологичных набора хромосом (см. гл. 14) в каждой паре гомологов одна хромосома происходит [c.82]

    А. Группа из 24 метафазных хромосом соматической клетки. В. 24 хромосомы, образовавшие 12 пар в первой метафазе мейоза (вид с полюса). В. Пары хромосом из другой метафазной пластинки. Эти пары хромосом изображены по отдельности и расположены в один ряд. У данн го вида частота хиазм необычайно высока. [c.103]

    У медоносной пчелы, как это хорошо известно, самки бывают двух типов многочисленные стерильные рабочие пчелы и одна плодовитая пчелиная матка. Различия между рабочими пчелами и матками обусловлены тем, что во время их роста они получают разную пищу. Непосредственная причина стерильности рабочих пчел заключается, по-видимому, в отсутствии некоторых витаминов. Рабочие пчелы, как и матки, диплоидны. Те и другие содержат в своих соматических клетках по 32 хромосомы. [c.133]

    У представителей отряда двукрылых наблюдается цитологическая особенность, так называемая соматическая конъюгация, заключающаяся в том, что в метафазных пластинках соматических клеток обе гомологичные хромосомы каждой пары располагаются друг подле друга. Это видно, например, на фиг. 101, которая на вид кажется схематичной, но на самом деле отражает подлинное расположение хромосом. [c.224]

    Этот случай ясно показывает, что сходство между хромосомными комплексами соматических клеток не может служить доказательством сходства их структуры. Более надежные сведения может дать изучение конъюгации хромосом во время мейоза или (у двукрылых) в клетках слюнных желез. Конъюгация часто бывает более или менее нарушена ввиду наличия структурных различий в других же случаях она протекает нормально или почти нормально. В этих случаях конъюгирующие хромосомы близки в структурном отношении или же совершенно гомологичны. Однако надо подчеркнуть, что даже совершенно нормальное образование бивалентов в первой метафазе мейоза не может служить доказательством полного структурного сходства хромосом скрещиваемых видов. Правильная конъюгация может происходить и при наличии [c.303]

    Такое строение ДНК-последовательностей У-генов в зародышевой линии трудно объяснить в рамках любой теории, опирающейся на полное запрещение переноса генетической информации от сомы к зародышевой линии. Во-первых, V-элементы половых клеток никогда не могли быть прямой мишенью для естественного отбора (т. е. связывания антигена). Отбору подвергается только полностью собранный белок антитела (H+L гетеродимер) на поверхности В-лимфоцита, и только он проходит проверку на антигенсвязывающую функцию. Сами по себе У-элементы клеток зародышевой линии никогда не превращаются в РНК (не транскрибируются) или в белок (не транслируются). Они экспрессируются в зрелом В-лимфоците только после перемещения ДНК в хромосоме соматической клетки, приводящего к созданию типичного перестроенного У(0)1-участка (рис. 4.5). Функциональные исследования обнаружили, что только половина репертуара V-генов зародышевой линии появляется в У(В)1-последовательностях. Многие, возможно, никогда не использовались в зрелых У(В)1-перестройках и, по-видимому, никогда не подвергались отбору. [c.155]

    НПК - единственный источник будущих яйцеклеток и снермиев - всегда имеют полный набор хромосом, тогда как все остальные клетки (соматические) имеют таковой набор лишь почти всегда у некоторых низших животных (нанример, аскарид) хромосомы соматических клеток теряют фрагменты, а у комара родаМш5 ог некоторые хромосомы соматических клеток просто уничтожаются. Хотя такие примеры и редки, они ясно говорят о принципиальной возможности эволюции но Вейсману . Столь же важно, что ННК имеют совсем особую цитоплазму [c.205]

    Влияние радиоактивного излучения на живые системы может быть соматическим или генетическим. Соматическое воздействие оказывается на организм в течение всей его жизни. Генетическое воздействие вызывает генетический эффект, влияя на потомство вследствие нарущений в генах и хромосомах, ответственных за воспроизведение потомства. Генетические эффекты 1руднее поддаются изучению, чем соматические, поскольку генетические нарущения могут проявиться лишь через несколько поколений. К соматическим воздействиям радиоактивного излучения относятся ожоги , т. е. разрушения молекул, подобные тем, которые возникают при действии высоких температур. Кроме того, они проявляются в форме раковых заболеваний. Эти заболевания вызываются нарущениями в механизме, регулирующем рост клеток, что заставляет их размножаться неконтролируемым образом. Как правило, радиоактивное излучение представляет наибольшую опасность для тканей, которые воспроизводят себя с наибольшей скоростью, например костного мозга, кроветворных тканей и лимфатических узлов. По-видимому, лейкемия является наиболее распространенным раковым заболеванием, вызываемым радиоактивным излучением. [c.264]


    В пакующей клеточной линии не образуются компетентные по репликации ретровирусы дикого типа, способные встраиваться в гены и приводить к некотролируемой пролиферации некоторых клеток (т. е. к превращению их в раковые клетки). Это весьма существенно, особенно если частицы ретровирусного вектора предполагается использовать для геной терапии соматических клеток человека. В качестве меры предосторожности все же проводят регулярное тестирование готовых ретровирусных векторов, с тем чтобы выявить ретровирусы дикого типа. Кроме того, в пакующей клеточной линии нуклеотидные последовательности ретровируса и вектора локализованы в трех разных областях хромосомы, что делает весьма маловероятной возможность последовательных рекомбинационных событий, которые могли бы привести к образованию компетентного по репликации ретровируса. [c.489]

    Аутосома (Autosome) Любая хромосома, не являющаяся половой. В соматических клетках человека присутствуют 22 пары аутосом и одна пара половых хромосом. [c.544]

    Необходимо иметь в виду, что, в оттшчие от половой гибридизации, соматическая гибридизация эукариотических клеток завершается объединением под одной мембраной не только ядерных геномов двух (или более) особей, но и генов цитоплазмы (митохондриальных, хлоропластных, емкостью в 1000—2000 генов), что может отразиться на функциональной активности гибрида У межвидовых гибридов часть хромосом может затрачиваться за счет элиминации, которая оказывается видоспецифичной Так в гибридах протопластов клеток "мышь х человек" и "человек х комар" элиминируются хромосомы человека и комара соответственно При морфологическом различии хромосом такие гибриды удобны для картирования генов Напомним, что в соматических клетках мыши содержится 20 пар хромосом, в клетках человека 23 пары хромосом и три пары — в диплоидных клетках комара [c.183]

    Таким образом, на практике стремятся осзтцествлять соматическую гибридизацию для заметного расширения рамок скрещивания, для включения (переноса) внеядерных генов и их функций в гибридное потомство и для локализации генов в хромосомах [c.183]

    Большинство клеток человеческого тела (соматических клеток) содержат 23 пары хромосом. Исютючение составляют гаметы (сперматозоиды и яйцеклетки), содержащие только половину этого числа хромосом. В процессе оплодотворения при слиянии сперматозоидов с яйцеклетками возникают новые клетки (зиготы) с необходимыми 23 парами хромосом, которые образуют основу живого организма. Дальнейшее развитие происходит путем митоза, или деления клеток — процесса, при котором каждая хромосома, прежде чем клетка разделится, дуплицируется. В результате возншсают две новые клетки с идентичной системой 23 пар хромосом. [c.39]

    Большинство спермиев- это клетки, избавленные от всего лишнего , не обремененные такими цитоплазматическими органеллами, как рибосомы, эн-доплазматический ретнкулум нли аппарат Гольджи, присутствия которых не требуется для передачи ДНК яйцеклетке. С другой стороны, спермни содержат много митохондрий, расположенных в тех местах, где они могут наиболее эффективно снабжать энергией жгутик. Спермий обычно состоит из двух морфологически и функционально различающихся частей, заключенных в единую плазматическую мембрану из головки, содержащей необычайно сильно уплотненное гаплоидное ядро, и хвоста, который продвигает всю клетку по направлению к яйцу и способствует прохождению головки через яйцевую оболочку. ДНК в ядре неактивна и исключительно плотно упакована, так что объем ее доведен до минимума. Хромосомы многих сперматозоидов обходятся даже без гистонов, свойственных соматическим клеткам,-вместо этого здесь имеются простые белки, обладающие большим положительным зарядом. [c.35]

    ОТ отца, а другая-от матери. П )и нормальном митотическом делении материнская и отцовская хромосомы не обмениваются генетическим материалом, и поэтому каждая из дочерних клеток получает от родителей полный ин-такгный набор отцовских генов и такой же набор материнских. В норме обмен генами между материнским и отцовским гомологами происходит только в половых клетках при кроссинговере во время мейоза. Иногда, однако, кроссинговер между гомологами происходит и при делении обычных соматических клеток. Это называют митотической рекомбинацшей. Если материнская и отцовская хромосомы обмениваются идентичными участками, т.е. если клетка по этим участкам гомозиготна, то такой обмен остается незамеченным. Но если обмениваться будут участки, по которым клетка гетерозиготна, то может возникнуть выраженный фенотипический эффект. В результате рекомбинации могут, например, появиться дочерние клетки, имеющие различную пигментацию, и тогда при дальнейшем размножении эти клетки образуют участки ткани разного цвета. Механизм этого иллюстрируют схемы на рис. 15-33, где показано, как после единичного акта митотической рекомбинации на фоне нормальных клеток может появиться двойное пятно, образованное двумя клонами клеток с различными генетическими маркерами. [c.83]

    Мы уже использовали термин хромосома по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информа-Щ1И вируса, прокариота или эукариотической клетки. Однако первоначально слово хромосома (т. е. окрашенное тело ) использовалось в другом смысле, для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем. Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза— процесса деления ядра в соматических клетках (рис. 27-22). В покоящихся, неде-лящихся эукариотических клетках хромо- [c.873]

    Кроме ДНК, обнаруживаемой в ядре эукариотических клеток, в цитоплазме также присутствует очень небольшое количество ДНК, отличающейся от ядерной по нуклеотидному составу эта цитоплазматическая ДНК локализована в митохондриях. Хлоропласты фотосинтезирующих клеток также содержат ДНК. Обьлно в покоящихся соматических клетках ДНК этих органелл составляет менее 0,1% всей клеточной ДНК, однако в оплодотворенных и делящихся яйцеклетках, где число митохондрий сильно увеличено, количество митохондриальной ДНК значительно выше. Митохондриальные ДНК (мДНК)-это двухцепочечные кольцевые молекулы очень малого по сравнению с молекулами ДНК ядерной хромосомы размера. В животных клетках мДНК имеет мол. массу всего 10 -10 . Молекулы хлоро-пластной ДНК значительно больше ДНК митохондрий. ДНК обеих этих органелл не связана с гистонами. [c.876]

    У всех высших растений и животных в процессе полового размножения происходит смена ядерных фаз. При оплодотворении половые клетки (гаметы) и их ядра сливаются, образуя зиготу. Отцовское и материнское ядра вносят при оплодотворении одинаковое число хромосом (п) таким образом, ядро зиготы содержит двойной хромосомный набор (2п). Иными словами, гаметы-гаплоидные клетки (т.е. клетки с одним набором хромосом), а соматические клетки-диплоидные (с двумя наборами). Поэтому при образовании гамет следующего поколения число хромосом в клетке (2и) должно уменьшиться вдвое (2и/2 = и). Совокупность процессов, приводящих к уменьшению числа хромосом, называют мейозом или редукционным делением (рис. 2.3). Мейоз - важнейший процесс у организмов, размножающихся половым путем он приводит к двум результатам 1) к перекомбинированию отцовских и материнских наследственных факторов (генов) и 2) к уменьшению числа хромосом. Мейоз начинается с конъюгации хромосом-каждая хромосома соединяется с соответствующей (гомологичной) хромосомой, происходящей от дфугого родителя. Во время конъюгации путем разрыва и перекрестного воссоединения (кроссинговера) может происходить обмен фрагментами одинаковой длины между гомологичными хромосомами. Затем следует двукратное разделение спаренных расщепившихся хромосом, и в результате образуются четыре клетки, каждая из которых имеет гаплоидное ядро. Таким образом, в процессе мейоза не только происходит перетасовка хромосом материнского и отцовского происхождения, но может произойти и обмен сегментами между гомологичными хромосомами. Оба процесса приводят к новым сочетаниям генов (к их рекомбинации). [c.24]

    Итак, мы располагаем многочисленными данными о том, что ДНК является носителем генетической информации. Благодаря своей комплементарной структуре ДНК замечательно подходит к этой роли. Ее способ репликации, при котором материнская молекула дает начало двум идентичным дочерним молекулам, гарантирует, что каждая клетка, образовавшаяся путем митоза, получает точно такой же по количеству и качеству набор хромосом, какой содержался в материнской клетке. Постоянство количества ДНК во всех покоящихся соматических клетках данного вида, удвоение этого количества перед делением, наличие половины его в клетках спермы, имеющих половинный набор хромосом,— все эти данные подтверждают основной вывод, хотя сами по себе отнюдь не являются решающими доказательствами. Основной вывод опирается и на хорошо известное соотношение между содержанием ДНК в клетке и числом хромосом, а также на твердо установленный факт локализации ДНК в хромосомах. Дальнейшие подтверждения базируются на данных по метаболитической стабильности и на ряде наблюдений, показавших, что ДНК в отсутствие белка может действовать как инфекционный агент (стр. 157), передающий биологическую информацию. Однако наиболее убедительные доказательства были получены, безусловно, при изучении бактериально трансформации. [c.314]

    Внутреннее содержимое ядра нуклеоплазма), видимо, определенным образом организовано. Обычно в нем можно различить обособленное, более плотное сферическое тельце (или несколько таких телец), называемое ядрышком. Ядрышки особенно богаты РНК основная масса ядерной РНК (составляющая 10—20% всей клеточной РНК) локализована, по-видимому, именно в них. Почти вся клеточная ДНК (около 95%) заключена в ядре и распределяется по нуклеоплазме в виде хроматина в период, когда клетка находится в покоящемся состоянии , т. е. когда все процессы — в проме кутке между двумя делениями — направлены на поддержание жизнедеятельности и рост. Непосредственно, перед делением хроматин конденсируется, образуя высокоупорядоченные дискретные линейные структуры, так называемые хромосомы. Число хромосом, приходящееся на соматическую клетку, постоянно, и этот набор хромосол в результате митотического деления передается дочерней клетке. [c.243]

    Физические основы классической генетики. Хромосомы как группы сцепления. Эксперименты Моргана привели его еще к одному очень важному выводу. Оказалось, что число групп сцепления у Drosophila в точности равно числу хромосом, содержащихся в ядрах соматических клеток этого организма. [c.478]

    Показано расположение на хромосомах примерно 100 генов, известных у плодовой мушки. Это pa пoтожeнидиплоидный набор хромосом из соматической клетки самца дрозофилы. [c.94]

    А. Фотография метафазной пластинки соматической клетки с 46 хромосомами. Б., Идио-грамма хромосомного комплекса, т. е. схема, показывающая относительную длину разных хромосом и их разделение центромерой на доа плеча (центромера показана белым) Все хромосомы можно разделить по размерам на 7 групп. Помимо 22 обычных хромосомных типов, имеющихся как у мужчин, так и у женщин (1—22), на схеме представлены также половые хромосомы (X и V). Подсчет и классификация хромосом производятся согласно классификации, рекомендованной конференцией в Денвере (196Э г.). В. Пары хромосом в первой метафазе мейоза. Видна пара половых хромосом (черные), окруженная парами обычных хромосом (белые). Г. Три пары половых хромосом, состоящие из маленькой У-хромосомы и более крупной Х-хромосомы. Д. Та же группа хро.мосом, что и на В, но X- и У-хромосомы разъединились и отошли к противоположным полюсам, тогда как хромосомы, составляющие остальные пары, еще соединены друг с другом. [c.128]

    А. Первая анафаза мейоза у самца бо.чьшая Х- ромосома отходит к одному полюсу. Б В. Группы хромосом в первой анафазе (вид с полюса) —6 аутосом, В —6 аутосом и одна Х-хромосома. Г. Соматический комплекс хромосом самца 12 аутосом и одна Х-хромосома. Д. Соматический комплекс хромосом самки с 12 аутосомами и двумя Х-хромосомами. [c.130]

    В своей работе 1929 г. Мёллер и Пайнтер вынуждены были ограничиться цитологическим анализом обычных соматических хромосом, которые у плодовой мушки очень малы (фиг. 101). Но в 1933 г. Е. Гейтц и Г. Бауэр сделали исключительно ценное открытие, что клетки слюнных желез личинок нескольких видов насекомых, принадлежащих к отряду двукрылых, содержат гигантские хромосомы, структуру которых удается исследовать весьма детально. Наличие подобных образований было замечено еще Б 1881, но лишь в 1933 г. стало ясно, что это обычные хромосомы. [c.222]

    А. Две гомологичные хромосомы похожи на параллельные полосатые ленты, лежащие так, что черные и белые диски разной величины одной из хромосом расположены точно против соответствующих дисков другой. Б. Комплекс соматических зфомосо самки. [c.224]

    В гл. XXIV упоминалось, что некоторые виды пщеницы имеют 28 хромосом, тогда как другие — 42 кроме того, известны виды с 14 хромосомами. Эти числа наблюдаются в соматических клетках в половых же клетках число хромосом вдвое меньще, т. е. равно соответственно 14, 21 и- 7 или, если расположить эти числа в порядке возрастания, 7, 14 и 21 (фиг. 140). Все эти числа кратны семи (1-7, 2-7, 3-7) число 7 называют основным числом для этого рода. [c.311]


Смотреть страницы где упоминается термин Хромосома соматические: [c.460]    [c.465]    [c.182]    [c.35]    [c.75]    [c.30]    [c.31]    [c.34]    [c.86]    [c.95]    [c.96]    [c.127]    [c.176]    [c.222]    [c.297]    [c.298]    [c.299]   
Цитология растений Изд.4 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Картирование хромосом с использованием гибридных соматических клеток

Хромосома хромосомы

Хромосомы

Хромосомы в соматических клетках

Хромосомы, элиминация соматических гибридах



© 2025 chem21.info Реклама на сайте