Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы электрохимические потенциалы

    Защита металлов электрохимическим путем. Этот метод иначе называется протекторной защитой или электрозащитой. Для этого используют специальный анод — протектор, который готовится из металла или сплава, имеющего более отрицательный электродный потенциал, чем потенциал защищаемого металла. Протектор присоединяется к защищаемому металлу и, контактируя, они оказывают взаимное поляризующее действие. Протектор будет разрущаться от коррозии, предохраняя соответствующий защищаемый металл. В качестве протекторов чаще всего используют цинк, старые железные детали, магниевые сплавы и т. д. Обычно протекторная защита достигает своей цели в тех средах, которые хорошо проводят электрический ток. [c.239]


    На основании значений /внутр при разных значениях потенциала может быть построена зависимость /внутр = / (У), т. е. зависимость скорости коррозии металла от потенциала, представляющая большой самостоятельный интерес и необходимая, например, для установления доли электрохимического механизма коррозионного процесса (см. рис. 190), на котором абсцисса точки s даст /max = /э = х, Т. е. числитель правой части уравнения (627) для расчета Ьэ = х. [c.285]

    Рассмотрим сущность проблем Вольта и абсолютного скачка потенциала. Вольта предполагал, что э. д. с. электрохимической цепи связана с разностью потенциалов, возникающей при контакте двух разнородных металлов. Если составить правильно разомкнутую цепь только из различных металлов, то разность потенциалов на ее концах равна нулю. Однако в вольтовом столбе имелась прокладка между электродами, и Вольта полагал, что благодаря ей разность потенциалов в цепи сохраняется (рис. 54, а). С другой стороны, согласно теории Нернста на границе двух различных металлов скачок потенциала не возникает скачки наблюдаются только в ионных двойных слоях на границе электрода и раствора (рис. 54, б). Представления Нернста аналогичны тому, что вольта-потенциал на границе двух металлов равен нулю, а п. н. з. должны быть одинаковы на всех металлах. Поскольку представления Вольта и Нернста противоречат экспериментальным данным, в электрохимии возникли две проблемы. Первая из них связана с вопросом о том, какова зависимость разности потенциалов на концах электрохимической цепи от вольта-потенциала на границе двух металлов. Это — проблема Вольта. Вторая проблема связана с вопросом о том, какова величина отдельного гальвани-потенциала на границе электрод — раствор. Это — проблема абсолютного скачка потенциала. [c.98]

Рис. 187. Зависимости скорости растворения металла от потенциала по электрохимическому ( э х) и химическому ( х) механизмам Рис. 187. Зависимости <a href="/info/581696">скорости растворения металла</a> от потенциала по электрохимическому ( э х) и химическому ( х) механизмам
    Все или большая часть валентных электронов металла образуют ненасыщенные химические связи (см. 7). В этом смысле валентные электроны металла подобны электронам в зоне проводимости полупроводника и отсюда понятно, что большинство металлов по данным эффекта Холла обладают электропроводностью/г типа. Поэтому, электрохимический потенциал электронов в металле может быть записан следующим образом  [c.169]


    Так как в реальном процессе переноса элементарного заряда из одной фазы в другую химическая и электрическая работы совершаются одновременно, то определить можно лишь общий энергетический эффект, отвечающий изменению электрохимического потенциала, но не отдельные его слагаемые. Поэтому найти экспериментально абсолютную разность электрических потенциалов (или скачок потенциала между двумя разными фазами) до сих пор не удалось. Э.д.с. электрохимической системы Е, напротив, можно непосредственно измерить она л.олжна, следовательно, отвечать разности потенциалов между двумя точками, лежащими в одной и той же фазе. Этими точками (см. рис. 7) могут быть точки Ь н д, находящиеся в одном н том же металле, или точки а и г, расположенные в вакууме вблизи поверхности металла. На рис, 7 изображена правильно разомкнутая электрохимическая цепь, на двух концах которой находится один и тот же металл. Если считать э,д.с. положительной величиной, то положительное электричество [c.30]

    На некоторых типах оборудования достаточно интенсивен процесс контактной электрохимической коррозии, вызываемой электрическим контактом металлов с различающимися значениями электрохимического потенциала. [c.208]

    Если в масле имеется вода, содержащиеся в нем коррозионно-активные вещества (органические кислоты, сернистые соединения и т. п.) диссоциируют в водном растворе на ионы, и тогда коррозия носит электрохимический характер. Электрохимическая коррозия, в отличие от химической, протекает в виде двух одновременных самостоятельных процессов — анодного и катодного, каждый 3 которых локализуется на определенных участках металла, контактирующего с маслом. Электрохимическая коррозия особенно интенсивна, когда обводненное масло контактирует с металлами, имеющими разный электрохимический потенциал, однако даже у одного металла всегда имеются химически неодно родные участки с различными потенциалами между ними при взаимодействии с электролитом и возникает гальванический ток. Разрушение металла при электрохимической коррозии происходит только на анодных участках, причем количество прокорродировавшего металла (Зм (в г) можйо определить из выражения [8]  [c.15]

    Время установления равновесия реакции образования МСС из растворов щелочного металла в определенной степени зависит от электрохимического потенциала анион-радикалов с различными восстановителями. [c.265]

    Одним из металлов, электрохимическое осаждение которого представляет интерес для современной техники, является алюминий. Стандартный потенциал алюминия (—1,66 В) значительно отрицательнее потенциала выделения водорода, поэтому металл не может быть выделен путем электролиза водных растворов, что препятствует использованию алюминия как гальванического покрытия. [c.109]

    Рост непористых слоев происходит, если через эти слои возможна диффузия ИОНОВ растворяющегося металла и электронов, анионов, атомов кислорода или гидроксильных групп. Согласно теории К. Вагнера движение ионов определяется градиентом их электрохимического потенциала внутри пассивирующего слоя. При небольшой толщине оксидного слоя внутри него возникает электрическое поле большой [c.368]

    Вследствие второго процесса, связанного с выравниванием и а именно перетекания свободных электростатических зарядов с поверхности одной фазы на другую, происходит изменение внешних потенциалов металла и раствора, являющихся слагаемыми электрохимического потенциала [см. уравнение (5.3)]. Поэтому, например, если до контакта металла и раствора обе фазы не несли свободных зарядов (г )( ) = О и 115<Р) = 0), то после контакта внешние потенциалы их не равны нулю, а следовательно, не равна нулю и их разность, определяющая вольта-потенциал на границе металл — раствор V = = 0. [c.26]

    В заключение заметим, что в литературе электрохимический потенциал часто называется уровнем Ферми или химическим потенциалом. Первое название обычно применяется к электронам в металлах и полупроводниках, а второе к нейтральным атомам и молекулам. [c.35]

    Очевидно, что термодинамическая концентрация валентных электронов (т. е. ненасыщенных химических связен) у всех металлов весьма велика и должна быть близка к единице. Поэтому уровень электрохимического потенциала электронов в металле практически совпадает с уровнем их полной потенциальной энер- [c.170]

    При установлении между окисной пленкой и объемом кристалла электронного равновесия в рассматриваемой системе образуется общий уровень электрохимического потенциала электронов, который не может проходить выше зоны проводимости и ниже валентной зоны. Поэтому энергетические уровни окисной пленки, оказывающие наибольшее влияние на величину коэффициента поверхностной рекомбинации, должны находиться вблизи уровня на расстоянии, не превышающем ширины запрещенной зоны для данного кристалла (см. рис. 53 и 58). Считая, что гидратированная окисная пленка вместе с адсорбированными в ней частицами подобна водному раствору, и обращаясь к рис. 53, мы приходим к выводу, что наиболее эффективными центрами рекомбинации в окисной пленке являются атомы или ионы элементов, располагающихся в правой части ряда напряжений металлов или металлоидов (см. стр. 192). Такими элементами являются водород, медь, серебро, золото, а также кислород и сера. Напомним, что именно для ионов этих элементов характерна высокая скорость электронного обмена при контакте металла или полупроводника с электролитом. Поэтому дe aнный [c.210]


    При выполнении этого условия, т. е. в том случае, когда контактная разность потенциалов между полупроводником и металлом превосходит по величине 0,5—1 в, а по знаку соответствует обогащению полупроводника неосновными носителями, на поверхности последнего возникает так называемый инверсионный слой. Из сказанного понятно, что основные носители в объеме полупроводника и в инверсионном слое на поверхности имеют противоположный знак. Так, в разобранном выше примере основными носителями в объеме кристалла являются дырки, а основными носителями на поверхности — свободные электроны. Отсюда следует, что потенциальный барьер в слое пространственного заряда полупроводника соответствует образованию р—п перехода. Поскольку термодинамическая концентрация носителей заряда на контактной поверхности полупроводника близка к единице, то потенциальный барьер между этой поверхностью и металлом практически отсутствует. Поэтому в рассмотренном случае, так же как и в предыдущем, на границе раздела образуется потенциальный барьер простейшей формы. Вольт-амперная характеристика этого барьера совпадает с вольт-амперной характеристикой р—п перехода. Сказанное поясняется энергетической диаграммой, приведенной на рис. 50. Из диаграммы видно, что равновесная высота потенциального барьера, расположенного в слое пространственного заряда полупроводника, равна расстоянию между уровнем электрохимического потенциала и уровнем наиболее удаленной от него зоны (проводимости или валентной) в объеме полупроводника. [c.181]

    Обратим теперь внимание на то, что суммарная высота потенциального барьера, возникающего на границе металла с полупроводником, вообще не зависит от природы металла, а определяется только положением электрохимического потенциала электронов в полупроводнике. Этот результат непосредственно следует из формулы (140). Очевидно, что для рассматриваемого случая величина Ь.А из этой формулы равна [c.182]

    Заметим, что 6-й и 7-й потенциалы ионизации этих элементов очень велики например, у хрома они равны соответственно 96 и 167,7 эВ. Это делает совершенно невозможным существование ионов с зарядом 6-Ь, хотя степень окисления 4-6 у хрома вполне устойчива и легко достигается. Способность переходить в состояние иона 34- у хрома выражена наиболее резко. Нормальный электрохимический потенциал хрома —0,74В, молибдена — 0,2В, а у вольфрама он положителен (4-0,11). Металлы побочной подгруппы VI группы склонны к образованию разнообразных комплексных соединений. [c.211]

    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]

    На поверхности металлических изделий, находяшпх-ся в контакте с почвенным электролитом, вследствие местных неоднородностей состава металла или электролита возникает большое количество коррозионных элементов, природа которых аналогична природе гальванических элементов. При этом коррозионному разрушению подвергаются анодные участки, имеющие более отрицательный электрохимический потенциал по сравнению с близрасположенными катодными участками, имеющими более положительный потенциал. [c.44]

    Кроме перечисленных изменений параметров, характеризующих равновесие тонкого ггалимолекулярного слоя, возможны п другие. Например, электрохимический потенциал и работа выхода электрона в тонком слое металла должны иметь значения, отличающиеся от соответствующих значений для большой массы вещества. [c.164]

    Таким образом, электрохимический потенциал электрона в металле отражает его полную энергию на уровне Ферми при Г=ОК, а химический потенциал объединяет кинетическую энергию на уровне Ферми ер и обменную составляющую потенциальной энергии Уобм. [c.190]

    Вместе с тем, поскольку электродные реакции протекают на границе электрод — раствор (или расплав), представляет интерес вопрос о работе выхода электронов из металла в раствор (или расплав) при заданном электродном потенциале. За пределами двойного слоя потенциал в любой точке раствора (или расплава) одинаков, следовательно, одинаков и электрохимический потенциал электрона. Поэтому работа выхода электрона в раствор (или расплав) электролита при заданном электродном потенциале не зависит от природы металла. Этот вывод нашел прямое экспериментальное подтверждение в опытах по фотоэмиссии электронов из металла в раствор электролита, а также в опытах по катодной генерации сольватированных электронов в апротонных растворителях. На рис. VIII.24 представлены катодные поляризационные кривые в гексаметилфосфортриамиде на различных металлах (Л, И. Кришталик, Н. М. Алпатова). Нижняя группа прямых характеризует зависящее от природы металла катодное выделение водорода в подкисленных растворах солей. Верхняя прямая отвечает процессу генерации сольватированных электронов на различных катодах. Практическое совпадение прямых для разных металлов демонстрирует независимость работы выхода электронов из металла в раствор от природы металла. [c.240]

    Эффективным средством защиты металлов от коррозии являются такие электрохимические методы, как метод протекторов и метод внешнего потенциала. Методом протекторов (защитников) называют такой прием, когда к металлической детали и узлу деталей припаивают или присоединяют металлическим проводником кусок металла, электродный потенциал которого ниже, чем электродный потенциал защищаемого металла. Этим создаются условия для образования гальванического элемента, в котором более активный металл, являясь анодом, окисляется и защищает деталь до своего полного разрушения. По методу внешнего.потенциала защищаемый металл подсоединяют к отрицательному полюсу источника посто5 нного тока, тем самым превращая его в катод. На катоде восстанавливается окислитель из окружающей среды, получая электроны не от металла, а от источника тока. [c.198]

    Как правило, электрохимический потенциал при образовании твердого раствора или ннтерметаллида уменьшается (A A < 0), так как убыль химического потенциала является значительной и определяющей. Однако можно представить себе частный случай, когда Дц,-> 0. Действительно, если ннтерметаллическая фаза образуется без изменения типа кристаллической решетки, то уменьшение химических потенциалов для атомов металла-растворителя очень невелико. Например, пусть имеем двухкомпонентную систему — В, в которой А—электроотрицательный металл, а В — электроположительный. Причем последний металл составляет основу сплава. Тогда структура двойного слоя у такой интерметаллической фазы практически не отличается от структуры двойного слоя у фазы чистого благородного металла, т. е. хв = Следовательно, изменение электрохимического потенциала для компонента В согласно (8.36) будет равно [c.208]


Смотреть страницы где упоминается термин Металлы электрохимические потенциалы: [c.191]    [c.342]    [c.8]    [c.8]    [c.38]    [c.93]    [c.230]    [c.245]    [c.230]    [c.101]    [c.113]    [c.202]    [c.264]    [c.230]   
Лабораторная техника органической химии (1966) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Бурштейн. Исследование пассивации металлов кислородом методом измерения контактной разности потенциалов и электрохимическими методами

Материалы для расчета распределения потенциала и тока при электрохимической коррозии металлов

Потенциал электрохимический

Потенциалы металлов

ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ МЕТАЛЛОВ Двойной электрический слой и электродные потенциалы

ЭЛЕКТРОХИМИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ Измерение электродных потенциалов

ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ ЖЕЛЕЗА НА ГРАНИЦЕ МЕТАЛЛ - РАСТВОР Электродные потенциалы и токи обмена железа в растворах его солей

Электродные потенциалы и электрохимический механизм коррозии металлов

Электрохимический ряд металлов

Электрохимический ряд напряжений и нормальные потенциалы металлов

Электрохимический ряд напряжений металлов (стандартные электродные потенциалы)



© 2025 chem21.info Реклама на сайте