Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод внешнего потенциала

    Метод внешнего потенциала. Конструкция или изделие подключается к отрицательному полюсу динамомашины или выпрямителя и этим тоже ликвидируется коррозионный про- [c.528]

    Метод внешнего потенциала. Конструкция или изделие подключается к отрицательному полюсу динамомашины или выпрямителя и этим тоже ликвидируется коррозионный процесс. Положительный полюс источника питания замыкается на землю (рис. 248). [c.546]


    При проведении определений этим методом внешнее напряжение не накладывают. Платиновый рабочий электрод накоротко замыкают с анодом, потенциал которого является достаточным для восстановления определяемого иона. В таком случае анод чаще всего погружают в другой электролит и для предотвращения явлений цементации катодное и анодное пространства разделяют диафрагмой. В качестве анодов часто применяют относительно неблагородные металлы, погруженные в электролиты с определенным значением pH. [c.149]

    Схема установки для определения потенциала растворения металла по сравнению с водородным электродом компенсационным методом приведена на рис. 123, где V — элемент Вестона с электродвижущей, силой 1,083 В, почти не зависящей от температуры. Элемент Вестона включается на сопротивление АВ (с линейным законом изменения сопротивления), исследуемый элемент включается на это же сопротивление через скользящий контакт С. Если падение внешнего потенциала от элемента Вестона на участке АС равно ЭДС элемента, то гальванометр (Г) покажет отсутствие тока. Отсюда легко найти ЭДС испытуемого элемента (Дё ) [c.233]

    На металлическое изделие налагают извне отрицательный потенциал, больший, чем развивает при работе коррозионной пары более активный металл. Это осуществляют методами протектора и внешнего потенциала. [c.406]

    Метод изучения химической пассивации заключается в исследовании зависимости скорости растворения металла от потенциала, который задается электроду не с помощью внешней анодной поляризации, а введением в электролит химических соединений. Этот метод позволяет, судя по результатам, которые будут изложены ниже, получать ценную информацию о механизме действ]]я ингибиторов вблизи стационарных потенциалов, чего не позволяет метод внешней анодной поляризации, сильно сдвигающий потенциал в положительную сторону. [c.55]

    Исследование зависимости скорости растворения стали от потенциала двумя независимыми методами — внешней анодной поляризацией и внутренней с помощью ингибиторов (рис. 2,20) по- [c.60]

    В свете рассмотренных выще закономерностей нам хотелось бы обратить внимание на то, что, если только не наблюдается вторичного осаждения ионов более благородного металла на менее благородном, нет какого-либо специфического влияния контактов, как это иногда ошибочно думают. Единственное влияние, которое оказывает тот или иной контакт, это смещение потенциала в ту или другую сторону. Оно и вызывает изменение коррозии. Поэтому поляризация внешним анодным током приводит к такому же эффекту, как и присоединение более благородного металла. Контактную коррозию удобнее изучать не на парах, а методом внешней поляризации, позволяющим сразу получать данные об ожидаемом эффекте при присоединении катодов, обладающих самыми различными потенциалами. [c.38]


    Изложенный выше метод вычисления наиболее вероятного макросостояния хотя и является вполне общим, тем не менее уязвим в одном отношении. А именно, он основан на разбиении 11-пространства. Энергии 8 г связаны с ячейками 1-пространства— фазового пространства одной частицы. Это вполне пригодно для систем, состоящих из невзаимодействующих частиц (идеальный газ), где энергия частицы является функцией только ее положения в 1-пространстве. Такое описание также годится и для системы невзаимодействующих частиц при наличии внешнего потенциала. В этом случае состояние частицы все еще определяется ее положением в 1-пространстве. Например, для вертикального столбика газа энергия частицы в 1-й ячейке равна [c.318]

    Защита металлов от коррозии внешним потенциалом. При возникновении гальванических пар на отдельных участках сплава металла наиболее активный металл разрушается, переходя в ионное состояние. При этом на нем возникает некоторый отрицательный потенциал. Если на изделие наложить извне отрицательный потенциал, больший, чем развивает при работе коррозионной пары более активный металл, то коррозия прекратится. Это осуществляется методами протекторов и внешнего потенциала. [c.364]

    Такое разделение электрохимического потенциала на две части уже не является чисто формальным, поскольку каждое из слагаемых может быть определено в реальном физическом эксперименте, соответствующие методы которого будут рассмотрены ниже. Можно определить внешний потенциал фазы (вольта-потенциал) как работу переноса единичного заряда из незаряженной точки в бесконечности в точку, расположенную на расстоянии примерно 1 (И см от поверхности фазы. [c.192]

    Существует и другой метод измерения потенциала, при котором ток в цепи не протекает и потенциалы на электродах сохраняются постоянными. Этот метод, называемый компенсационным, и заключается в том, что от внешнего источника тока на электроды подается напряжение, равное разности потенциалов между электродами, но противоположное по знаку. Ток в системе отсутствует и на электродах устанавливается состояние, максимально приближающееся к равновесному. Измерение потенциала сводится, таким образом, к измерению величины компенсирующего напряжения. Прибор для измерения потенциала, или э. д. с., таким методом называется потенциометром (рис. 29). [c.114]

    В потенциометрическом методе окислительный потенциал определяют с помощью особым образом составленного обратимого гальванического элемента, который представляет собой электрохимическую систему с двумя взаимодействующими окислительно-восстановительными системами. В одном полуэлементе замкнутого элемента происходит выделение электронов из раствора вследствие окислительного процесса, а во втором — их поглощение — восстановительный процесс. От одного полуэлемента к другому электроны переносятся по внешней цепи. По достижении равновесия между двумя окислительно-восстановительными системами переход во внешней цепи прекращается. Разность электрических потенциалов между идентичными металлическими фазами разомкнутого элемента равна его электродвижущей силе Е (при условии обратимости обоих электродов). Если гальванический элемент составлен из полуэлементов, один из которых содержит данную окислительно-восстановительную систему, а второй является вспомогательным с неизменным электродным потенциалом (при постоянной температуре), то длят элементов [c.53]

    Так как потенциал коррозии метала в обычных средах является компромиссным потенциалом (суммарный анодный ток равен суммарному катодному току), то па потенциостатическую кривую, полученную методом внешней поляризации, оказывает влияние характер локальной катодной кривой (анализ и интерпретация кривых проведены Эделяну [27] и Мюллером [28]). По этой причине остаток кислорода в растворе, в котором происходит испытание, может вызывать отклонение от обычного хода кривой в виде образования отрицательной петли В, соответствующей катодному восстановлению растворенного кислорода, которое имеет место после критической точки пассивности. Обычная пассивная область и низкое значение положительного тока возобновляются только при потенциале срс, > как показано на рис. 10.36. Другие ионы могут также влиять на ток. Если они — окислители, они будут оказывать тот же самый эффект, что и растворенный кислород. Однако некоторые из них могут увеличивать наблюдаемый ток до значений, намного превышающих действительный коррозионный ток системы. Поляризационная кривая, полученная на титане [29], показывает уровни тока в пассивной области, которые не согласуются с более низкими скоростями коррозии, определенными гравиметрически, по концентрации ионов Т1 + в растворе. В случае присутствия железа в нейтральной воде [30] плотность тока в пассивной области про- [c.605]

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]


    Полученные методами вычислительного эксперимента результаты позволяют сделать вывод о том, что рассмотренные потенциалы межмолекулярного взаимодействия приводят к качественно правильному описанию свойств воды в объемной фазе. Для того чтобы избежать растянутого состояния, достаточно увеличить плотность числа частиц, что слабо сказывается на рассчитанных значениях структурных и энергетических характеристик водных систем. Анализ показывает [339], что это заключение справедливо и для ряда других моделей. Поэтому выбор потенциала межмолекулярного взаимодействия для описания молекулярно-статистических характеристик воды определяется, в основном, минимумом времени, затрачиваемого на расчет энергии взаимодействия в системе. Кроме того, для сопоставления результатов, полученных при различных внешних условиях, необходимо использовать одну и ту же модель. [c.121]

    Метод определен электрокинетического потенциала, основа - ный на явлении потенциала течения, несколько сложнее, чем рассмотренные ранее. Однако получаемые этим методом результаты ближе к реальным, поскольку в эксперименте не требуется наложения внешней разности потенциалов, которая может вызывать ряд побочных явлений (поляризация, нагревание). [c.226]

    Электродиализ. Этот метод представляет собой ускоренный процесс диализа с применением электрического тока. В электродиализаторах различных конструкций имеется три камеры (рис. 82) с внутренними стенками из полупроницаемых мембран. В среднюю камеру наливают коллоидный раствор, подлежат,ий очистке, а во внешние камеры — растворитель — проточную воду. Во внешних камерах находятся электроды, на которые подается напряжение постоянного тока. При падении потенциала 2—5-10 В/м и более образуется направленное движение ионов к соответствующим электродам. Поскольку ионы свободно проходят че- [c.292]

    Для более точного определения о по методу стационарных капель измеряют координаты большого числа точек на контуре капли, а затем полученные данные обрабатывают при помощи электронно-вычислительной машины (ЭВМ). Если к капле жидкого металла подвести контакт, а в раствор ввести вспомогательный электрод, то можно изменять потенциал капли при помощи внешнего источника тока таким образом, получить зависимость пограничного натяжения от потенциала. [c.36]

    Явление адсорбции на границе раздела фаз тесно связано со вторым явлением — пространственным разделением зарядов и обусловленным этим изменением гальвани-потенциала. Рассмотрим связь этих явлений на примере ртутного электрода в водном растворе NaF. При помощи вспомогательного электрода и внешнего источника тока (рис. 49) можно в широких пределах изменять разность потенциалов 1 на концах цепи, а следовательно, и гальвани-потенциал Др ф на границе раствор — ртуть. Однако при этом происходит одновременное изменение гальвани-потенциала вспомогательного электрода Др ф, а также возникновение омического падения потенциала в объеме раствора, так что 6 i= i=6 (Д ф). Чтобы измерить изменение гальвани-потенциала исследуемого электрода (в данном примере ртутного), в систему вводят третий электрод — электрод сравнения и измеряют разность потенциалов между этим электродом и исследуемым электродом компенсационным методом или при помощи высокоомного вольтметра. При этом ток в цепи электрода сравнения практически равен нулю (за этим следят при помощи чувствительного гальванометра А- ). Следовательно, разность потенциалов Е не содержит омического падения напряжения и складывается из трех гальвани-потенциалов на границах электрод сравнения — раствор, раствор — ртуть и ртуть — металл электрода сравнения. При изменении положения делителя напряжения на внешнем источнике тока из этих трех гальвани-потенциа-лов изменяется только Др ф, а потому (Др ф)- Таким образом, [c.145]

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]

    Эффективным средством защиты металлов от коррозии являются такие электрохимические методы, как метод протекторов и метод внешнего потенциала. Методом протекторов (защитников) называют такой прием, когда к металлической детали и узлу деталей припаивают или присоединяют металлическим проводником кусок металла, электродный потенциал которого ниже, чем электродный потенциал защищаемого металла. Этим создаются условия для образования гальванического элемента, в котором более активный металл, являясь анодом, окисляется и защищает деталь до своего полного разрушения. По методу внешнего.потенциала защищаемый металл подсоединяют к отрицательному полюсу источника посто5 нного тока, тем самым превращая его в катод. На катоде восстанавливается окислитель из окружающей среды, получая электроны не от металла, а от источника тока. [c.198]

    Ускоренный электрохимический метод испытания на точечную коррозию, предложенный Бреннертом и усовершенствованный Г. В. Акимовым и Г. Б. Кларк, состоит в том, что образец коррозионностойкой стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал (рис. 355). При достижении некоторого значения потенциала (потенциала пробивания) защитная пленка на образце разрушается в одной или нескольких точках, вследствие чего значение электродного потенциала образца уменьшается. Наблюдается хорошее соответствие результатов сравнительных коррозионных испытаний хромистых и хромоникелевых сталей на точечную коррозию с данными, полученными методом определения потенциала пробивания. [c.463]

    Пашалис и Вайсс методом теории Бозмуи ений с пспользо-ванием функций Хартри—Фока рассчитали поляризуемости ие только свободных ионов, по и ионов в кристаллической решетке. Они также показали, что учет внешнего электрического поля решетки (внешнего потенциала) уменьшает рефракции анионов и увеличивает— катионов (табл. 36). [c.70]

    Предложенный Лифсоном и Качальским [24] метод расчета потенциала в растворе жестких макромолекул, окруженных противоионами, заключается в оценке величины потенциала () иутр при определенных граничных условиях. Во внешней области влияние электростатического поля макроиона, экранированного противоионами, на потенциал невелико, следовательно, <С 1 и для [c.30]

    Например, при р=100м-м, i=0,05m и 1 А(71доп=0,01 В измерения допустимы при всех токах /<5-10-5 А. Однако при увеличении тока в 20 раз получим недопустимую ошибку 0,2 В. Поскольку для дефекта в изоляции ПМС величины I и J, как правило, неизвестны, то для контроля потенциала в дефекте изоляции катодно поляризуемого ПМС метод внешнего электрода может использоваться лишь сочетании с другими, усложняющими измерениями. Сомнительны и часто проводимые этим методом измерения U на реальных ПМС при катодной защите, хотя он пока включен в ГОСТ 9.015—74 и его вынужденно используют при отсутствии возможности применения других, научно обоснованных методов. Строго говоря, этот метод полезен лишь в том отношении, что позволяет установить сам факт наличия или отсутствия катодной поляризации на ПМС. [c.33]

    Электрический ток используют и в другом методе, аналогичном объемному методу анализа, и поэтому называемом электрообъемным методом анализа. Так же как в объемном анализг, к исследуемому раствору постепенно приливают раствор соответствующего реактива однако, в отличие от обычного объемного анализа, момент, когда прилито достаточное для реакции количество раствора реактива, наблюдают не по изменению внешнего вида исследуемого раствора, а по изменению электрических свойств раствора в кондуктометри-ческом мет.оде анализа измеряют электропроводность раствора, в потенциометрическом методе анализа — потенциал электрода, опущенного в исследуемый раствор. [c.15]

    Таким образом, метод состоит в измерении реальных поляризационных кривых V — / (/)внешн (пунктирная кривая на рис. 191) и определении тока саморастворения металла (по коррозионным потерям Ат) /внутр при различных постоянных значениях потенциала V = onst с применением потенциостата. Дважды нанеся на график рис. 191 последние значения (один раз, откладывая их от оси ординат, а второй — прибавляя к реальной поляризационной кривой), получим идеальную коррозионную диаграмму (сплошные линии на рис. 191). [c.284]

    Описанный выше метод может быть использован и при наличии поляризационных кривых, полученных упрощенным методом, при котором измеряют силу тока / и разность потенциалов ДУ между двумя одинаковыми электродами из одного и того же металла, помещенными в электролит и одновременно катодно- и анодно-поляризуемыми от внешнего источника тока. Измерение омического сопротивления электролита исследуемой двухэлектродной системы / внутр с помощью мостика переменного тока позволяет определить омическое падение потенциала в электр05ште измерительной ячейки АУ = внутр и рассчитать поляризационный сдвиг потенциалов [c.286]

    Анализ основан на зависимости вольт-амперной характеристики гальванического элемента (электрохимической ячейки) от концентрации определяемого компонента в газовой смеси, находящейся в динамическом равновесии с электрохимической системой ячейки и определяющей значение окислительно-восстановн-тельного потенциала раствора электролита и течение электродных процессов. На этой зависимости базируются две группы методов определения концентрации компонентов смесей газов и паров 1) с приложением внешнего поляризующего напряжения к электродам ячейки и 2) без него (с внутренним электролизом). [c.612]

    К первой группе относятся потенциометрический метод (изменение окислительно-восстановительного потенциала раствора электролита, омывающего один из электродов ячейки, обусловленное реакцией с участием определяемого компонента газовой смеси и зависящее от его концентрации мерой концентрации является изменение э. д. с. ячейки), амперо метрический метод (в деполяризационном его варианте используется зависимость силы диффузионного тока, возникающего в поляризованной ячейке под деполяризующим действием определяемого компонента, от концентрации этого компонента газовой смеси) и кулонометрический метод (тот же амперометрический метод, но осуществляемый в услопиях количественного проведения электрохимической реакции перевода определяемого вещества газовой смеси в другую форму или другое соединение мерой концентрации является количество израсходованного на реакцию электричества или, при непрерывном стабилизированном подводе контролируемой газовой смеси, ток во внешней цепи ячейки). Кулонометрические ЭХ-газоанализаторы обычно выпускаются как автоматические титрометры непрерывного действия с так называемой электрохимической компенсацией. Мерой концентрации определяемого компонента газовой смеси служит в этих приборах ток электролиза, выделяющий из раствора электролита (в котором растворяется определяемый газ) титрант в сте-хиометрических количествах, что обеспечивается электрометрическим измерением точки эквивалентности и автоматическим управлением током электролиза. [c.612]

    Уравнения электрокапиллярной кривой названы так потому, что выражаемые ими зависимости экспериментально проверялись Лнпиманом с иомощь о прибора, называемого капиллярным электрометром (рис. П. 9). При исследовании зависимости поверхностного натяжения от потенциала двойного электрического слоя в качестве одной из фаз наиболее удобно применять металлическую ртуть, поверхиостиое натяжение которой легко измерить, например, капиллярным методом, и в то же время удобно изменять межфазный потенциал с помощью внешнего источника тока. Кроме того, ртуть являете. почти идеально поляризуемым электродом, т. е. таким электролом, на котором не протекают электродные реакции при прохол., еини тока, и поэтому изменение заряда электрода вызывает только изменение его потенциала. Это обусловлено тем, что благородные металлы почти совсем не отдают своих ионов в раствор. Малое содержание их в растворе делает невозможным и обратную реакцию (восстановления). [c.50]

    При изучении электрохимических процессов пользуются методом вращающегося дискового электрода (см. 171. XXIII) при частотах вращения от 100 до 10 тыс. об/мин. Исследования обычно проводят по трехэлектродной схеме. От внешнего источника задается напряжение между вращающимся дисковым электродом и вспомогательным (обычно платиновым) электродом. Потенциал рабочего электрода измеряют относительно электрода сравнения. Как и в случаях полярографического метода, строят поляризационные кривые. Они имеют также вид волны и могут быть опнсаны либо уравнением (XXV. 3) в случае концентрационной, либо уравнением (ХХУ. 11) в случае электрохимической поляризации. [c.304]

    Стандартный потенциал системы Сг(VI)/ r(III) о=1,36 В. Как видно, его значение ниже, чем для системы Mn(VII)/ /Мп(П), но, несмотря на это, метод имеет ряд преимуществ из бихромата калия можно приготовить первичный стандартный раствор, который устойчив при хранении. Кроме того, хлориды окисляются бихроматом только в очень сильнокислых растворах и поэтому не мешают определению. Поскольку в данном случае Fe(II) не оказывает индуцирующего действия, его можно определять в присутствии хлорид-ионов. Точку эквивалентности можно устанавливать потенциометрически или с помощью дифениламиносульфоновой кислоты в качестве окис-лительно-восстановительного индикатора. Можно также применять внешний индикатор — гексацианоферрат(1П) калия. [c.174]


Смотреть страницы где упоминается термин Метод внешнего потенциала: [c.101]    [c.44]    [c.234]    [c.136]    [c.101]    [c.196]    [c.34]    [c.254]    [c.34]    [c.254]   
Неорганическая химия Издание 2 (1976) -- [ c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Метод потенциале

Потенциал внешний



© 2025 chem21.info Реклама на сайте