Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал электрохимический нормальный

    Это последнее условие можно реализовать приближенно, опираясь на анализ значений нормального потенциала электрохимической ячейки различных газовых реакций (табл. 9.4). [c.707]

    Термодинамическая устойчивость металла приближенно оценивается значением нормального равновесного потенциала. Электрохимическая коррозия может протекать тогда, когда существует начальная разность потенциалов катодного и анодного процессов, т. е. когда анод имеет более отрицательный потенциал по сравнению с катодом. Границы термодинамической вероятности коррозионного процесса для каждого конкретного случая можно определить, рассчитывая начальные потенциалы катода и анода для данных условий. Результаты таких расчетов, представленные графически, получили наименование диаграмм Пурбэ. Наличие начальной разности потенциалов между катодом и анодом указывает на теоретическую возможность протекания коррозионного процесса. Однако реально устанавливающаяся скорость коррозии будет определяться в большей мере скоростями катодного и анодного процессов, чем начальными значениями электродных потенциалов. [c.39]


    Аналогичный метод многократных добавок был разработан для определения фторида в модельных растворах и реальных препаратах, содержащих соли магния или бария и лимонную кислоту (табл. 4.2). Для сравнения вариантов метода добавок по экспериментальным данным рассчитывали методом одной добавки значение Сх и методом многократных добавок с применением ЭВМ — значения крутизны электродной функции S, сумму нормального и диффузионного потенциалов Eq и концентрацию фторида Сх (для удобства Сх выражена в единицах объема добавляемого раствора NaF). Сравнение значений погрешности результатов анализа, найденных двумя этими методами, указывает на несомненное преимущество второго метода анализа, погрешность которого практически во всех случаях ниже погрешности метода одной добавки. Несколько различаются также значения Eq и S, найденные в двух вариантах метода добавок, что связано со снижением погрешности за счет усреднения потенциала электрохимической ячейки и учета флуктуаций значений Е и S. Расчет значений Ец и Сх проводили по приведенной ниже программе, составленной на языке БЕЙСИК (табл. 4.3 и 4.4). [c.78]

    Равновесный электрохимический потенциал (по нормальному водородному электроду), в. ...  [c.47]

    Стандартный потенциал пары Сс1 /Сс1 правей —0,40 в. Какие электрохимические процессы будут происходить при работе гальванического элемента, построенного из этой пары и нормального водородного электрода Составьте общее уравнение реакции. [c.376]

    Равновесный потенциал различных электродов, погруженных в раствор собственной соли, в котором активность (концентрация) ионов данного металла равна единице (1 моль/л), измеренный относительно нормального водородного электрода, называется нормальным, или стандартным, потенциалом и,.). Для всех металлов они образуют так называемый электрохимический ряд напряжений (табл. 3.1) или стандартные электродные потенциалы элементов в водных растворах при температуре 25 °С. [c.34]

    Потенциал водородного электрода, у которого активность ионов водорода равна единице и летучесть газообразного водорода равна I бар, принимается за нуль отсчета стандартных электрохимических потенциалов. Такой электрод называют нормальным водородным электродом и обычно обозначают НВЭ. [c.252]

    Далее, чем больше концентрация титруемого раствора и титранта и чем больше разность между величинами нормальных потенциалов электрохимических реакций до и после точки эквивалентности (при прочих равных условиях), тем больше скачок потенциала. [c.38]


    Отношение металлов к электрохимической коррозии определяется величинами их стандартных (нормальных) электродных потенциалов. По этому признаку все металлы можно разделить на следующие четыре группы 1) повышенной активности (повышенной термодинамической нестабильности) —от щелочных металлов до кадмия (стандартный электродный потенциал = =—0,4 В). Эти металлы корродируют даже в нейтральных водных средах, не содержащих кислорода и окислителей. Они могут окисляться ионами водорода, находящимися в воде н в нейтральных водных средах 2) средней активности (термодинамически нестабильные), от кадмия до водорода ( =0,0 В). Данные металлы устойчивы в нейтральных средах при отсутствии кислорода, но в кислых средах подвергаются коррозии и в отсутствие кислорода  [c.192]

    По электрохимической активности цинк превосходит кадмий. Нормальный потенциал цинка —0,76 В, а кадмия —0,402 В цинк вытесняет кадмий из его солей. [c.205]

    Заметим, что 6-й и 7-й потенциалы ионизации этих элементов очень велики например, у хрома они равны соответственно 96 и 167,7 эВ. Это делает совершенно невозможным существование ионов с зарядом 6-Ь, хотя степень окисления 4-6 у хрома вполне устойчива и легко достигается. Способность переходить в состояние иона 34- у хрома выражена наиболее резко. Нормальный электрохимический потенциал хрома —0,74В, молибдена — 0,2В, а у вольфрама он положителен (4-0,11). Металлы побочной подгруппы VI группы склонны к образованию разнообразных комплексных соединений. [c.211]

    Приведите схему получения хингидрона. Напишите электрохимическое уравнение, на котором основано применение хингидрона для определения концентрации водородных ионов. Что такое нормальный потенциал (Eg) хинона Какие свойства хинона он характеризует  [c.171]

    Электрохимический метод. Низкий (—3,02 В) нормальный потенциал лития исключает возможность его получения из водных растворов солей. Электролиз растворов галогенидов лития в органических растворителях (пиридине, ацетоне, нитробензоле) дает небольшой выход по току (30—40%). Поэтому практическое значение получил только электролиз расплавленных солей. [c.68]

    Понятие электродный потенциал основано на различии в плотностях зарядов или энергии электронов в двух фазах. Избыток ионов или электронов на поверхности одной из фаз (твердой или жидкой) сообщает этой фазе внешний, или вольта-потенциал г]). Этот потенциал определяется работой, достаточной для медленного переноса единичного точечного электрического заряда из бесконечности в данную точку на поверхности фазы. Внутренний или гальва-ни-потенциал фазы ф выражается электрической работой, необходимой для перемещения единичного заряда из бесконечности, в вакууме в данную точку внутри фазы. Гальвани-потенциал представляет собой разность двух внутренних потенциалов между двумя точками в различных фазах, поэтому в противоположность вольта-потенциалу его нельзя определить экспериментально. Условились электродным потенциалом называть э. д. с. электрохимической цепи, в которой справа расположен исследуемый электрод, а слева нормальный водородный электрод. Совокупность потенциалов, установленных таким образом, составляет ряд нормальных потенциалов по водородной шкале (табл. 2). [c.12]

    Из металлов подгруппы цинка (2п, С(1, Нд) наиболее широко в гальванотехнике используют цинк, в меньшей степени —кадмий. Область применения кадмиевых и цинковых покрытий в значительной степени определяется защитными и физико-механическими свойствами цинка и кадмия. Основной областью использования цинковых и кадмиевых покрытий является защита стальных деталей от коррозии. Несмотря на относительно высокий нормальный потенциал —0,76 В, металлический цинк является довольно коррозионностойким в атмосферных условиях. Так как потенциал цинка имеет более отрицательное значение, чем потенциал железа, то при контакте цинка с железом и наличии влаги образуется гальванический элемент, в котором железо служит катодом. Таким образом, покрытие цинком защищает сталь не только механически, но и электрохимически. В случае повреждения цинкового покрытия на небольшом участке железо корродировать не будет. [c.280]

    Интересно отметить, что невозможность измерения истинно равновесного потенциала железа обычно связывали с его структурной неоднородностью, вызывающей электрохимическую коррозию, однако имеется иная возможность протекания процесса по изложенному выше механизму. Нормальный равновесный потенциал обратимой реакции (158) близок к нормальному потенциалу ионизации железа Fe Fe + - - 2е (соответственно —0,463 В и —0,440 В по н. в. э. [103]), и поэтому образование промежуточного соединения неизбежно при равновесных условиях ионизации — восстановления железа в водных растворах, а следовательно, неизбежен необратимый процесс по реакции (159) или (161). [c.112]


    Баки с катодной защитой предназначены для хранения воды с температурой до 95 °С. При катодной защите применяют аноды из железокремниевого чугуна (ГОСТ 11849—76) со скоростью анодного растворения, не превышающей 0,2 кг/(А-год). Железокремниевые аноды не свариваются, и для катодной защиты баков их следует соединять встык с помощью стальной шпильки. Допускается применение анодов из алюминия, особенно при сочетании катодной защиты с лакокрасочным покрытием В-ЖС-41. Не допускается применение анодов из углеродистой стали, загрязняющих подпиточную воду продуктами коррозии в результате растворения анодов и ухудшающих качество сетевой воды. Срок службы железокремниевых анодов до их замены на новые составляет не менее 5 лет. Надежная электрохимическая защита внутренней поверхности бака от коррозии обеспечивается при величине поляризационного потенциала в пределах от —0,54 до —0,60 В (по нормальному водородному электроду). Визуальный осмотр внутренней поверхности баков с катодной защитой должен проводиться один раз в год. [c.163]

    Преимуществом данного способа отсчета потенциалов служит то обстоятельство, что знак потенциала в приведенной шкале совпадает со знаком заряда поверхности металла. Так, в частности, для ртути En = —0,20 в. Нормальный потенциал ртути по водородной шкале равен 0,80 в, следовательно, потенциал в приведенной шкале составляет 0,80—(—0,20) = = 1,00 в. Такому потенциалу будет соответствовать высокий положительный заряд поверхности ртути. Это заключение невозможно сделать, зная величину потенциала металла в водородной шкале. Приведенная шкала потенциалов особый интерес представляет для интерпретации электрохимических процессов, протекающих на границе раздела электрод—раствор, в частности процессов коррозии металлов. Их скорость зависит от строения двойного слоя, и, следовательно, в значительной степени определяется знаком фгпотенциала. Последний совпадает со знаком заряда поверхности металла, который можно найти посредством приведенной шкалы потенциалов, если известна нулевая точка металла. [c.31]

    В таких случаях значительно лучший результат можно получить при применении другой разновидности импульсного метода -дифференциальной двухимпульсной вольтамперометрии, имеющей признаки как нормальной, так и дифференциальной импульсной вольтамперометрии. В этом методе постояннотоковая развертка потенциала отсутствует и прямоугольные поляризующие импульсы накладываются на постоянное начальное значение потенциала Е , при котором электрохимическая реакция не идет, а импульсная развертка осуществляется за счет того, что амплитуда импульсов возрастает по линейному закону на малую величину ЪЕ. Отличие заключается в том, что в данном методе перед каждым поляризующим импульсом имеет место еще один предшествующий импульс с той же длительностью, но с меньшей амплитудой на постоянную величину А . При этом регистрируемый ток представляет собой разность двух выборок, выполняемых в конце основного и предшествующего импульсов. [c.358]

    Электролитическое рафинирование. Сравнительно высокий нормальный потенциал теллура позволяет в процессе электролиза отделить его от РЬ, Sn, Se и других примесей. Описаны процессы электрохимического выделения теллура из очищенных (обработкой сульфидом натрия) щелочных растворов с электродами из нержавеющей стали [4]. Электролит должен содержать 10% свободной щелочи и не менее 30 г/л Те. [c.150]

    При прохождении через водный раствор Na l постоянного электрического тока, к аноду движутся отрицательно заряженные ионы С1 и ОН , к катоду — положительно заряженные ионы Na+ и Н+. При этом в соответствии с электрохимическим рядом напряжений в первую очередь будут разряжаться те ионы, которые имеют наил еньший потенциал разряда. Нормальный потенциал разряда иона Na+ на твердом катоде из нейтрального раствора Na I равен —2,71 в (—2,92 в для нона К ) обратимый потенциал выделения водорода в тех же условиях составляет только —0,415 в. Поэтому на твердом катоде при электролизе нейтральных растворов хлористого натрия, даже при значительном для выделения водорода перенапряжении, будут разряжаться только ионы водорода. Оставшиеся же в растворе ионы 0Н будут образовывать с нонами Na+ возле катода едкий натр. [c.568]

    Скачки потенциала между фазами не поддаются экспериментальному определению. Поскольку э. д. с. электрохимической системы может быть легко измерена, то принято электродный потенциал считать равным э. д. с. цепи, составленной из водородного (слева) и данного электрода (справа). Водородный электрод при этом взят в стандартном состоянии (ан+ = 1) парциальное давление газа равно нормальному атмосферному давлению (1,013 10 Па) и его потенциал при любой температуре условно принят нулю. Электродные потенциалы при этом выражают в условной водородной шкале. Э. д. с. правильно разомкнутой цепи M Pt, HalLjM соответствует электродному потенциалу системы L M, для которого примем обозначение фьм  [c.469]

    Нормальный потенциал ф зависит лишь от температуры и природы электрохимической системы. При Т = onst и неизменности природы растворителя он является качественной характеристикой материала электрода и определяется как потенциал электрода, погруженного в раствор с активностью а = 1. [c.236]

    Следовательно, при одинаковой активности реагирующих веществ и степени оттитрованности скачок потенциала тем больше, чем больше разность нормальных потенциалов электрохимических реакций до и после точки эквивалентности. Естественно, при большей степени недо-титрованности и перетитрованности и большей активности реагирующих веществ АЕ также будет возрастать вследствие уменьшения второго члена правой части уравнения. [c.39]

    Исходя из величин нормальных потенциалов можно вычислить значение потенциала для любых заданных активностей (а в разбавленных растворах — вместо активностей можно брать для расчетов концентрации).. Ряд напряжений позволяет объяснить причины вытеснения из раствора одного металла другим, вытеснения водорода из кислот металлами, стоящими в таблице выше водорода, причины электрохимической корроз и-чйет ллов и другие вопросы. [c.259]

    В три пробирки наливают по 1-2 мл разбавленных растворов кислот серной, соляной и азотной. Вносят в каждзгю пробирку по кусочку алюминиевой стружки (опыт с азотной кислотой проводят под тягой ). Сравнивают активность взаимодействия алюминия с этими кислотами на холоде. Нагревают растворы на водяной бане. Что наблюдается Какой газ выделяется при взаимодействии алюминия с азотной кислотой Написать уравнения проделанных реакций. Исходя иа положения алюминия в электрохимическом ряду напряжений и величины его нормального электродного потенциала, объяснить возможность взаимодействия алюминия с разбавленными растворами серной и соляной кислот (см. табл. 11). [c.126]

    Таким образом, электродным потеициалом любого неизвестного электрода, опущенного в раствор, содержащий его ионы, принято называть электродвижущую силу элемента, составленного из исследуемого электрода и водородного электрода, находящегося в цормальных условиях. Если все вещества, участвующие в электрохимическом процессе, цротекающем в обратимом элементе,. находятся в нормальных условиях, т. е. их активности. или отношшие их активностей равны едини це, э. д. с. такого элемента равна своему нормальному (стандартному) значению. В соответствии с этим нормальным (стандартным) электродным потенциалом называют потенциал любого электрода, опущенного в раствор, содержащий его ионы, при условии, если активность или отношение активностей ионов, относительно которых электрод является обратимым, равны единице. [c.147]

    Регенерация отработанных травильных растворов в производстве печатных плат (см. задачу 355) производится электрохимическим методом. Катодный потенциал в примененном электролизере-регенераторе, измеренный по отношению к платиновому электроду сравнения, помеш,енному в католит, равен е — 0,41 В. Потенциал анода по отношению к платиновому электроду сравнения, находящемуся в анолите, был равен ба = + 0,86 В. Температура процесса 40° С. Равновесный окислительно-восстановительный потенциал в регенерируемом растворе равен ер -= - - 0,445 В по отношению к насыщенному каломельному электроду (н. к. э ). Окислительновосстановительный потенциал в растворе аналогичной ионной силы с таким же содержанием СиСМг, как и в регенерируемом растворе, и некоторым количеством одновалентной меди, но в отсутствие солей железа равен ер = - - 0,646 В по нормальному водородному электроду (н. в. э.). Равновесный потенциал медного электрода в растворе последнего вида, но в отсутствие СиС12 составляет - + 0,033 В (н.в.э.). Разница между потенциалами платиновых электродов, установленных у поверхностей катода и анода, равна Д V, 2,84 В, а при установке таких электродов по обе стороны диафрагмы, вплотную к ней — ЛКд 0,60 В. [c.260]

    Поверхностно активные вещества, присутствующие в растворе, влияют не только на скорость электрохимического процесса, но и на структуру катодных отложений. А. Т. Баграмян при электроосаждении серебра наблюдал явление катодной пассивности граней растущего кристалла. Это явление зависит от присутствия в растворе посторонних ПАВ и исчезает при очень тщательной очистке раствора от органических примесей. При концентрировании на поверхности органических веществ в относительно больших количествах нормальный рост грани затрудняется. Продолжение роста становится возможным при повышении потенциала до значения, при котором возникают новые кристаллические зародыши. Если часть поверхности остается незапассивированной, то в этом случае повышение эффективной плотности тока ведет к увеличению перенапряжения. [c.381]

    В отличие от цинка потенциалы кадмия и железа довольно близки (нормальный потенциал кадмия —0,402 В, железа Ре,/Ре + —0,440 В). Поэтому вид защиты стальных изделий кадмием (механическая или электрохимическая защита) в большой степени будет зависеть от среды и условий эксплуатации. Испы- [c.280]

    Механизм коррозии металла в почве определяется термодинамической вероятностью процесса. В почве, которую можно рассматривать как гетерогенный электролит, скорость коррозионного процесса по катодным и анодным реакциям, т, е. электрохимической коррозии, во много раз больше, чем химической. Поэтому принято считать, что почвенная коррозия протекает по механизму электрохимической коррозии, химическая коррозия в почвах практически отсутствует. Исходя из этого положения, явления, лежащие в основе почвенной коррозии, можно объяснить с позиций теории коррозии металлов в электролитах [2]. Известно, что разные металлы в различной степени подвержены коррозии. Чем легче совершается переход дтомов металла в ионы тем больше выделяется свободной энергии и тем менее коррозионностоек данный металл. Мерой этой энергии является значение нормального потенциала. [c.11]

    Наиболее широко распространенный вид электрохимической защиты металла—катодная поляризация. Для ряда металлических сооружений и сред нормированы пределы, в которых должна находиться защитная величина катодного потенциала металлической поверхности. Выбор минимального потенциала защиты ограничен нежелательностью выделения водорода, разрушающего противокоррозионное покрытие и охрупчивающеТо металл (последнее не учитывается действующими правилами защиты подземных сооружений). Поэтому в нормальном режиме катодной защиты превалирует катодная реакция ионизации кислорода. [c.208]

    В пользу электрохимической гипотезы коррозионно-механического разрушения говорит большая локальная скорость растворения металла, которая выражается в высокой локальной плотности тока коррозии. По существующим в литературе оценкам ток коррозии ювенильной поверхности составляет 1 — 10 А/см , при наличии на поверхности того же металла оксидных пленок ток снижается до 10" — 10" А/см , т.е. до 9 порядков. Исследование з. ектродных потенциалов различных металлов в процессе образования ювенильных поверхностей непосредственно в электролите показало, что степень разблагораживания потенциала определяется свойствами защитных пленок. Чем выше защитные свойства, тем выше степень разблагораживания. Наибольшее смещение в отрицательную сторону потенциала по отношению к нормальному каломельному электроду отмечено у алюминия в 3 %-ном растворе МаС1( до — 1,46 В), у магния — в растворе щелочи (1,19 В — 1,74 В). У железа, никеля и меди в 3 %-ном растворе ЫаС1 потенциал смещался соответственно от —0,47 до —0,6 В от — 0,17 до —0,51 В и от — 0,21 ДО —0,44 В. У ряда титановых сплавов нами получено смещение потенциала при зачистке поверхности, непосредственно в коррозионной среде от (—0,75) (— 0,90) В до (—1,24) -ь (-1,27) В. [c.14]

    СТАНДАРТНЫЙ ПОТЕНЦИАЛ (нормальный потенциал), значение электродного потенциала, измеренное в стандартных условиях относительно выбранного электрода сравнения (стандартного электрода). Обычно С.п. находят в условиях, когда термодинамич. активности а всех компонентов потенциалопределяющей р-ции, протекающей на исследуемом электроде, равны 1, а давление газа (для газовых электродов) равно 1,01 -10 Па (1 атм). Для водных р-ров в качестве стандартного электрода используют водородный электрод (Pt Н [1,01 Ю Па], Н [й=1]), потенциал к-рого при всех т-рах принимается равным нулю (см. Электроды сравнения) С. п. равен эдс электрохимической цепи, составленной из исследуемого и стандартного электродов. Согласно рекомендациям ИЮПАК (1953), при схематич. изображении цепи (гальванич. ячейки) водородный электрод всегда записывается слева, исследуемый-справа. Потенциал исследуемого электрода считается положитель-ньпи, если в режиме источник тока слева направо во внеш. цепи движутся электроны, а в р-ре-положительно заряженные частицы. Напр., С. п. хлорсеребряного электрода равен эдс гальванич. ячейки [c.414]

    Исследуем теперь, как изменяется потенциал катода со временем. Если допустить, что в начале электролиза на его новерхности концентрация меди (II) по существу равна 0,01 моль/л, поскольку раствор хорошо перемешивается, и что активационным сверхнотенциалом (нотенциал, который необходим для иреодоления омического падения напряжения в ячейке, равный произведению силы тока I на общее сонротивление электрохимического элемента К) можно пренебречь, то можно рассчитать нотенциал катода в момент, когда начинается выделение металлической меди, относительно нормального водородного электрода (НВЭ)  [c.112]

    До сих пор мы описывали окислительно-восстановительные реакции только с помощью их стехиометрических уравнений. Обратимся теперь к обсуждению степени заверщенности химических реакций подобного типа. В табл. 16.2 по существу указана способность различных химических элементов к окислению, определяемая их электрохимическим потенциалом. Существует несколько условных способов записи окислительно-восстановительных реакций и соответствующего им электрохимического потенциала. Один из них называется методом Латимера. Например, окисление цинка при нормальных условиях описывается, согласно этому методу, уравнением [c.294]


Смотреть страницы где упоминается термин Потенциал электрохимический нормальный: [c.136]    [c.364]    [c.147]    [c.197]    [c.257]    [c.191]    [c.86]    [c.192]    [c.291]    [c.294]    [c.169]   
Теоретическая электрохимия Издание 2 (1969) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал нормальный

Потенциал электрохимический



© 2025 chem21.info Реклама на сайте