Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт через пористые мембраны

    У А. Транспорт через пористые мембраны [c.226]

    Еще один подход, который может использоваться для описания транспорта через пористые мембраны, это фрикционная модель, или модель внутреннего трения. В ней прохождение газа через пористую мембрану рассматривается как сумма вязкостного потока и диффузии, т. е. поток всегда смешанный. Постулируется, что поры столь узкие, что свободный транспорт молекул растворенного вещества через поры невозможен и всегда существует определенное трение между растворенным веществом и стенкой поры, а также между растворителем и стенкой поры или растворителем и растворенным веществом. Сила трения Е в расчете на моль линейно связана с различиями скорости или с относительной скоростью. Коэффициент пропорциональности этой зависимости называется коэффициентом трения /. Рассматривая массоперенос растворителя и растворенного вещества и принимая стенки поры неподвижными Ут = 0), можно записать [c.230]


    Мембраны для разделения газовых смесей. Транспорт через пористые и непористые мембраны [c.417]

    В пористых мембранах наиболее важны такие структурные параметры, как размер пор, распределение пор по размерам, пористость и геометрия пор. Они должны учитываться в любой разрабатываемой модели. Селективность таких мембран основывается главным образом на различиях между размерами частицы и поры. Описание транспортных моделей будет включать обсуждение всех этих параметров. С другой стороны, в плотных, непористых мембранах молекула может проникать, только если она растворяется в мембране. Степень такой растворимости определяется сродством между полимером (мембраной) и низкомолекулярным компонентом. Далее, вследствие существования движущей силы компонент переносится от одной стороны мембраны к другой путем диффузии. Селективность в этих мембранах определяется в основном различиями растворимостей и/или коэффициентов диффузии. Следовательно, существенными для скорости транспорта параметрами являются такие, которые дают информацию о термодинамическом взаимодействии или сродстве между мембраной (полимером) и диффундирующим веществом. Взаимодействие между полимерами и газами обычно невелико, тогда как между полимерами и жидкостями часто существуют сильные взаимодействия. Когда сродство в системе увеличивается, полимерная сетка будет обнаруживать склонность к набуханию, и это набухание оказывает значительное влияние на транспорт. Такие эффекты должны рассматриваться при любом описании транспорта через плотные мембраны. [c.226]

    У.4.1. Транспорт газов через пористые мембраны [c.228]

    В конце этой главы мы попытаемся охватить все мембранные процессы в рамках единой модели с тем, чтобы выявить общность разных процессов в терминах движущих сил, потоков и основных принципов. Исходной точкой для этого могут служить задаваемые в общем виде уравнение закона Фика [22] или Стефана — Максвелла [23]. Чтобы описать транспорт через пористую или непористую мембраны, следует учесть два члена, а именно вклады диффузионного потока (г>) и конвективного потока (гх) (рис. У-22). Поток компонента г через мембрану может быть представлен как произведение скорости и кон- [c.259]

    Транспорт компонента разделяемой газовой смеси через пористую основу мембраны осуществляется одновременно несколькими механизмами переноса, в зависимости от структуры матрицы, свойств веществ и термодинамических параметров процесса. В общем случае движение компонентов смеси может вызываться конвективно-фильтрационным переносом, различного вида скольжениями вдоль поверхности пор, объемной диффузией, баро- и термодиффузией, кнудсеновской диффузией (эффузией), поверхностной диффузией, пленочным течением вследствии градиента расклинивающего давления, капиллярным переносом конденсированной фазы в анизотропных структурах. Вещество в порах скелета мембраны, как показано ранее, может находиться в виде объемной газовой фазы, капиллярной жидкости и адсорбированной пленки. Для каждого из этих состояний возможно несколько механизмов переноса, взаимосвязанных между собой. Не все виды переноса равнозначны по своему вкладу в результирующий поток веществу, поэтому при вычислении коэффициента проницаемости необходимо определить условия, при которых те или иные формы движения вещества являются доминирующими [З, 9, 10, 14—16]. [c.54]


    При ионном транспорте через мембраны можно выделить следующие основные стадии переноса (транспорта) ионов [2] 1) из обьема исходного раствора к мембране 2) через поверхностный слой 3) через активный (селективный) слой мембраны 4) в крупнопористом слое мембраны 5) в пористой подложке (если она имеется). [c.385]

    Толщину диффузионного слоя со стороны электрода определяли, измеряя микрометром толщину подложки (например,, ватмана) и мембраны (в которой крупнопористый слой составляет более 90%)- Учитывая, что селективные свойства н пористость крупнопористой части мембраны и ватмана близки, соответствующие стадии ионного транспорта через них объединили в одну, называемую стадией переноса иона через пористый слой. Его толщина в этих опытах составила 350 мкм. [c.121]

    Газоразделение возможно осуществить с использованием обоих типов мембран пористых и непористых. Однако механизмы транспорта через мембраны этих двух типов совершенно различны, как было показано в гл. V. [c.309]

    Можно охарактеризовать различные процессы по структуре мембран. При микрофильтрации вся толщина мембраны дает вклад в сопротивление транспорту, особенно при использовании симметричных пористых мембран. Толщина мембраны может варьировать от 10 мкм до 150 мкм и более. При ультрафильтрации и обратном осмосе используются асимметричные мембраны, в которых тонкий, относительно плотный верхний слой (толщиной 0,1-1,0 мкм) нанесен на подложку с пористой структурой (толщиной 50-150 мкм). Гидравлическое сопротивление практически полностью локализуется в верхнем слое, тогда как нижний слой выполняет лишь функцию подложки. Поток через эти (и другие) мембраны обратно пропорционален эффективной толщине, а поскольку мембраны обладают асимметричной структурой с толщиной верхнего слоя менее 1 мкм, такие мембраны могут представить интерес с экономической точки зрения. Сравнение различных процессов дано в табл. У1-4. [c.284]

    Для пористых мембран транспорт газа в системе газ — мембрана — газ заключается в эффузии газа через мельчайшие поры. Коэффициенты проницаемости, полученные для таких мембран, во многих аспектах отличаются от соответствующих коэффициентов для непористых поли- [c.174]

    Уравнение VI-30 показывает, что поток обратно пропорционален квадратному корню из молекулярной массы. Для заданных мембраны и перепада давления она служит единственным параметром, определяющим поток. Следовательно, разделение двух газов по механизму кнудсеновского потока зависит от отношения квадратных корней из их молекулярных масс. Это означает, что обычно достигаются низкие степени разделения. Более высоких степеней разделения можно достичь лишь при использовании каскадов, включающих несколько связанных между собой модулей (см. гл. VIII), что часто бывает экономически неоправданным, поэтому до сих пор этот способ использован в промышленном масштабе лишь для обогащения гексафторида урана ( иГб), который относится к очень дорогим веществам. Достигнутый фактор разделения и чрезвычайно низок в идеальном случае фактор разделения равен 1,0043, но и этого значения не удается достичь на практике. (Завод, где этот метод реализован с использованием керамических мембран, находится в Три-кастэне, во Франции.) Следует отметить, что при транспорте газов через непористые мембраны (см. разд. VI.4.2.2) кнудсеновский поток не имеет места. В то же время при использовании непористых композиционных мембран с плотным верхним слоем на подложке пористой структуры кнудсеновский поток, величина которого зависит от размера пор подложки, дает определенный вклад в общий поток. [c.310]

    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]


    Природа взаимодействия между исходным раствором и материалом мембраны будет оказывать значительное влияние как на равновесную концентрацию разделяемых веществ в мембранной фазе, так и на скорость транспорта компонентов смеси через мембрану. Необходимо отметить, что выбор полимера для процесса испарения связан с большими ограничениями. Перванорационные мембраны должны обладать не только высокими показателями селективности, производительности и механической прочности, но и выдерживать прямой контакт с органическими растворителями при новышенной температуре. Со стороны пермеата мембрана бывает почти сухой, по крайней мере, при работе по вакуумной схеме, поэтому набухает неравномерно, что влечет за собой дополнительную нагрузку на мембрану. Оптимально удовлетворяют этим требованиям композитные мембраны, в которых механическую, термическую и химическую стойкость обеспечивает практически инертная по отношению к пермеату пористая подложка, а характеристики массопереноса и селективности определяются тонким активным слоем. [c.218]

    Величина потока через мембрану является столь же вгьжной характеристикой, как селективность по отношению к различным типам растворенного вещества. Если выбор материала для мембраны основывался на характеристических разделительных свойствах, поток через приготовленную из этого материала мембрану можно улучшать за счет уменьшения толщины мембраны. Поток приблизительно обратно пропорционален толщине мембраны, поэтому большинство мембран обратного осмоса выполняются как асимметричные с плотным верхним слоем (толщиной до 1 мкм) и нижележащей пористой подложкой (толщиной 50-150 мкм). Сопротивление транспорту в такой мембране определяется в основном плотным верхним слоем. Различают два типа мембран с асимметричной структурой 1) интегральные или асимметричные мембраны и 2) композиционные мембраны. [c.300]

    Достаточно трудно приготовить бездефектный токий верхний слой из стеклообразного полимера. При получении бездефектных асимметричных мембран хорошо себя зарекомендовали два метода инверсии фаз, а именно метод двойной ванны [17], а также метод испарения [18, 19]. Существует элегантный метод приготовления бездефектной асимметричной мембраны, заключающийся в нанесении покрытия из высокопроницаемого полимера на асимметричную мембрану с небольшим числом дефектов. Такое покрытие закрывает поверхностные поры и возникает бездефектная мембрана [20]. Для увеличения скорости транспорта можно уменьшать толщину верхнего слоя. Для исследователя заманчиво представлять, какова допустимая концентрация дефектов, не приводящая к существенным потерям селективности. Такую оценку можно провести с использованием модели сопротивлений, предложенной Хенисом и Триподи [20]. На рис. VI-16 схематически показана асимметричная мембрана и соответствующий аналог электрической цепи. Очевидно, что поверхностная пористость должна быть незначительной, в противном случае селективность резко упадет. При нанесении тонкослойного покрытия поверх асимметричной мембраны такие дефекты устраняются. Несмотря на то что тем самым вводится дополнительное сопротивление, сопротивление закрытых пор значительно больше, чем у открытых, в результате чего поток через эти поры уменьшается, а селективность мембран возра- [c.320]


Смотреть страницы где упоминается термин Транспорт через пористые мембраны: [c.315]    [c.292]    [c.14]    [c.417]   
Смотреть главы в:

Введение в мембранную технологию -> Транспорт через пористые мембраны




ПОИСК





Смотрите так же термины и статьи:

Пористость мембраны



© 2024 chem21.info Реклама на сайте