Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы по активности одного компонента

    В некоторых случаях один из компонентов (пусть это будет компонент ]) выступает как растворитель, другой (или другие) — как растворенное веще" ство допустим, компонент 1 в чистом состоянии жидкий, а компонент 2 твердый или газообразный, так что жидкие растворы существуют лишь в ограниченной области концентрации с большим содержанием компонента I. Иногда для раствора, образованного двумя жидкими компонентами, изучают лишь область составов, где содержание одного из компонентов мало (допустим, задача состоит в исследовании влияния малых добавок компонента на свойства раствора). В подобных случаях удобным оказывается другой, несимметричный способ нормировки коэффициентов активности, — не на чистые компоненты, а на бесконечно разбавленный раствор. Принимается, что в бесконечно разбавленном растворе у = 1 как для растворителя, так и для растворенного вещества (г = 1,2). Для растворителя, таким образом, стандартное значение (Т, р) есть химический потенциал чистого растворителя. Для растворенного вещества стандартное значение химического потенциала — величина химического потенциала в гипотетической системе, образованной чистым компонентом 2, в которой молекула 2 взаимодействует с окружением а среднем так же, как и в бесконечно разбавленном по компоненту 2 растворе. [c.404]


    Допущение о параболической зависимости от числа атомов / компонента замещения в первой координационной сфере атома С является центральным в модели, развитой Вагнером [42]. Ее вывод математически прост, но менее обоснован теоретически, чем более строгие статистические модели. Результирующее уравнение, описывающее активность компонента С в тройной 1 - 2 - С системе, включает один подгоночный параметр (в отличие от изложенной выше модели, в которой таких параметров в результирующем уравнении нет). Подбирая подходящую величину этого параметра, достигают хорошее согласие с экспериментальными данными. Авторы работ [43, 44], используя метод Вагнера, модифицировали его, введя два подгоночных параметра. Не удивительно, что это дало лучшее согласие с экспериментом. В [45] также сохранено допущение о параболической зависимости, но в расчетах учитывали взаимодействия с атомами во второй координационной сфере. Их модель, как и модель Вагнера, содержит один подгоночный параметр. [c.453]

    Возникающие отклонения в способности к склеиванию определяли сложность проблемы, которая была успешно решена разработчиками рецептур адгезивов (клеев). Поскольку эти адгезивы склеивают широкое разнообразие типов эластомеров, они часто сложны и их состав, как правило, запатентован и является интеллектуальной собственностью. В отличие от многих промышленных конструкционных клеев их нельзя классифицировать на такие группы, как эпоксидные, фенольные, уретановые или акриловые. Универсальные рецептуры для резинометаллических узлов могут содержать до 6-8 компонентов помимо растворителей. Некоторые из них могут становиться химически активными при повышенных температурах отверждения. Поэтому универсальность и способность функционировать в различных условиях вулканизации, видимо, определяется несколькими механизмами склеивания, в частности, одним или несколькими процессам химической реакции на фанице рези-на-адгезив. Подобный вид направленной химической реакции может быть описан как образование поперечных мостиков . Таким образом, в зависимости от рассматриваемого эластомера и его конкретной вулканизационной системы, действует один или несколько связывающих механизмов клея, обеспечивая формирование прочных химических связей. [c.341]

    Один из способов, с помощью которого может быть измерено влияние изменения состава многокомпонентной системы на активность одного компонента, — это постановка такого эксперимента, чтобы только одна фаза была твердым раствором двух компонентов, а другие минералы были фазами постоянного состава. Например, реакцию [c.167]


    Если величины Ай и Avi для разделяемых компонентов имеют один знак, то очевидно, что отношение активностей более устойчиво при изменении давления и температуры, чем коэффициенты активности этих же компонентов. Отклонения парциальных значений энтальпии и объема легко связать с термическим уравнением состояния реальной газовой смеси и вычислить [12, 13]. Если сорбированную фазу можно рассматривать как идеальную систему, тогда (/ 1 и y j = l. Условие достаточно корректно в неидеальных системах, если отклонения энтальпии Ай,-, АЛ] и объема Аг г, Ад] одного знака и порядка. Если ограничиться условиями и то температурная и барическая зависимость коэффициента сорбционного разделения определяется, согласно (2.8), частными производными  [c.45]

    Расчет по давлению пара. Если один или оба компонента бинарного раствора обладают измеримым давлением пара, активность каждого из них в симметричной системе стандартных состояний может быть рассчитана по уравнению (129.5). [c.369]

    Проникновение зависит от изменений поверхностного натяжения и краевого угла. Экспериментальные данные 15] показывают, что изменения максимального размера центра парообразования в зависимости от состава могут быть значительны. Иэ табл. 1 видно, как изменяется рассчитанный размер центра парообразования при начале кипения на поверхности с никелевым покрытием для системы этанол — вода. Из данных, приведенных в таблице, следует, что изменение в составе смеси, в частности, когда один из компонентов — вода, может значительно увеличить перегрев, необходимый для возникновения и поддержания парообразования, в основном в результате уменьшения краевого угла и, следовательно, максимального активного центра нуклеации. [c.414]

    Стандартные (нормальные) окислительно-восстановительные электродные потенциалы. Измерение потенциала отдельного электрода практически неосуществимо, тогда как измерение э. д. с. гальванического элемента, состоящего из двух полуэлементов, не представляет сложности. Поэтому если в гальванических элементах принять один и тот же произвольно выбранный полуэлемент, а в качестве второго использовать электрод в различных ред-окс системах в стандартных условиях, т. е. когда активность каждого из участвующих в электродной реакции компонентов равна единице, то измеренные э. д. с. позволяют судить об относительных величинах потенциалов этих электродов (полуэлементов). Электрод, относительно которого измеряют потенциал других электродов, принято называть электродом сравнения., [c.35]

    Ввиду некоторой громоздкости расчетов ограничимся только формулировкой основных результатов, отсылая читателя для ознакомления с деталями расчетов к первоисточникам [6—10]. Применение метода Гиббса к системе, состоящей из плоской свободной пленки и находящейся с ней в равновесии объемной жидкой фазой, позволило получить строгое рещение задачи для случая, когда пленка, помимо двух летучих компонентов, например воды и газа, содержит еще один [7—9] или два [10] нелетучих компонента, например поверхностно-активное вещество (ПАВ) и электролит. [c.57]

    Процессы адсорбции отличаются избирательностью и обратимостью, позволяя поглощать (адсорбировать) из газовых (паровых) смесей и растворов один или несколько компонентов, а затем в других условиях выделять (десорбировать) их из твердой фазы. При этом избирательность зависит от природы адсорбента и адсорбируемых веществ, а предельное удельное количество поглощаемого вещества зависит еще от его концентрации в исходной смеси и температуры, в случае газов — также от давления. Заметим, что при контакте адсорбента с газовой смесью или раствором первоначально поглощаются все их компоненты, но после насыщения поверхности адсорбента в нее внедряются преимущественно молекулы с большей адсорбируемостью, вытесняя другие молекулы. Процесс адсорбции прекращается после заполнения активной поверхности адсорбента молекулами адсорбата, т. е. по достижении равновесия системы (или полного насыщения адсорбента в данных условиях). [c.613]

    Естественное усовершенствование процессов статистической привитой полимеризации — проведение реакций отрыва атома водорода от относительно небольшого числа активных центров передачи цепи, которые вводятся в растворимый компонент в ходе полимеризации или после нее. Число таких центров прививки, необходимых для каждой молекулы растворимого компонента, должно зависеть от эффективности соответствующих групп в генерировании центров роста цепи в условиях дисперсионной полимеризации. В идеале молекула стабилизатора должна содержать один якорный компонент соответствующего размера, присоединенный к растворимому компоненту. Однако число возможных реакций в каждой системе и неизбежное распределение полимера по функциональности таковы, что на практике невозможен строгий контроль за структурой. После выбора функциональной группы, эффективной как агент передачи при полимеризации данного мономера, необходимо эмпирически подобрать состав растворимого компонента. [c.100]


    Осложнение основного электродного процесса заключается в том, что продукты кислотно-основного равновесия могут быть электрохимически активными и участвовать в стадии переноса. В наиболее простом варианте протонируется только один из компонентов А, А или А -. Поведение системы определяется как редокс-свой-ствами, так и кислотно-основным равновесием. Основным признаком таких процессов с включенными реакциями протонирования является зависимость тока от pH. Направление процесса определяется условием p/ i скорость реакции протонирования сравни- [c.71]

    Изучена активность бинарных металлических (Мед+Мев) - адсорбционных катализаторов в реакциях разложения перекиси водорода, гидрирования аллилового спирта и циклогексена. Во взятых системах Ме А — один из постоянных компонентов палладий или платина, Ме в — варьируемые компоненты рутений, родий, осмий, иридий, рений и серебро. [c.60]

    Характер влияния химически активных компонентов на решение системы уравнений (1) выясним, рассмотрев сначала для простоты случай, когда только один к-п компонент обладает высокой реакционной способностью [достаточные условия для этого даются ниже неравенствами (4) и (5)]. [c.17]

    Многочисленные примеры таких кривых были нами даны в первой статье. Перелом кривой отвечает внезапному изменению состава системы практически исчерпан один из активных компонентов. [c.305]

    Процессы гидродеароматизации направлены на удаление ароматических углеводородов из прямогонных фракций и легкого газойля каталитического крекинга путем перевода их в нафтены с целью получения компонентов реактивных топлив и растворителей. Для гидрирования ароматических углеводородов использовали никельвольфрамсульфидные катализаторы, обладающие низкой активностью. Для повышения гидрирующей способности к обычным катализаторам добавляли или Р(1, гидрирующие способности которых на один-два порядка выше сульфидов Мо и №. В присутствии электроноакцепторной матрицы-цеолита металлический катализатор защищается от отравления сернистым ядом. Возникновение дефицита электронной плотности на атомах металла, взаимодействующих с сильнокислотными протонными центрами носителя по донорно-акцеп-торному механизму, сдвигает равновесие сульфидирования влево. Электроноакцепторная защита эффективна для металлов групп и Рс1 при содержании серы в сырье до 0,5%. Избыточная расщепляющая активность катализатора, возникающая в результате введения Р1, может быть подавлена селективной щелочной обработкой катализатора. Электроноакцепторная защита металла реализована в катализаторах гидродеароматизации ГТ-15 и ГТ-15М. Эти катализаторы обеспечивают высокую степень гидрирования при содержании серы в сырье до 0,5%. Для продуктов с более высоким содержанием серы применяют катализаторы типа 269 и 269М в оксидной форме и НВС-30 в сульфидной форме системы Mo(W), Перечисленные катализаторы позволяют снизить давление процесса до 5 МПа без изменения степени гидрирования при удвоенной объемной скорости. [c.179]

    В подавляющем большинстве случаев подвижная фаза состоит из двух или более компонентов. При этом один компонент подвижной фазы в системе данного типа является сорбционно неактивным, т. е. сам по себе не в состоянии вызвать элюирование введенных в колонку анализируемых веществ (растворители А). Среди остальных компонентов подвижной фазы, помимо веществ специального назначения (соли буферов, ион-парные и другие модификаторы), присутствует растворитель сорбционно активный, который сам по себе способен приводить к быстрому элюированию компонентов пробы (растворители Б). Задача выбора элюирующей силы, приемлемой для данного сорбата, сводится к определению такого соотношения компонентов А и Б, которое обеспечивает необходимые для данной задачи величины удефживанця. В зависимости от типа хроматографической системы и характера сорбатов одно й то же соединение может выступать в качестве растворителя Л или Б. Так, при анализе малополярных сорбатов на силикагеле может оказаться полезной система растворителей гексан — хлороформ. В этом случае хлороформ выступает в роли растворителя Б, т. е. увеличение его концентрации вызывает уменьшение удерживания. При хроматографии на этом же сорбенте более полярных сорбатов часто используют систему растворителей хлороформ — метанол. Однако здесь компонентом Б, определяющим подвижность зоны, является метанол, в то время как хлороформ выступает в роли компонента А, т. е. инертного разбавителя подвижной фазы. [c.306]

    Представляет интерес выяснить применимость к данной системе общетермодинамических подходов, которые успешно используются для аппроксимации свойств огромного массива других систем и являются основой для расчета процессов ректификации и перегонки с помощью стандартизованных программ. Уже первые попытки расчета коэффициентов активности компонентов показали, что ставшие традиционными методы проверки и предсказания данных о равновесии жидкость — пар Редлиха — Кистера, Херинг-тона и т. п. к данной системе неприменимы, так как один компонент— вода, в широком диапазоне концентраций по своему поведению близок к идеальному, а другой — формальдегид — проявляет сильно отрицательные отклонения от идеального поведения [292, 293, 294]. Однако последующий анализ показал, что применение методов этого типа, основанных на сравнении свойств реального раствора с результатами расчета на основе закона Рауля, не вполне корректно. Поведение мономерного негидратированного формальдегида как вещества в чистом виде газообразного при всех температурах существования водных растворов в принципе не может подчиняться закону Рауля, поскольку растворимость газообразных веществ в жидкостях коррелируется законом Генри. [c.144]

    Когда катализатор в системе не один, возникает затруднение при определении различия между промотированным и смешанным катализатором. Пиз и Тейлор [222] предложили различать простую активацию одного вещества, играющего роль катализатора, др)тим веществом, которое само по себе не является катализатором реакции, или может быть небольшим количеством относительно активного вещес-ша, и коактивацию, наблюдаемую у некоторых катализаторов, когда действие каждого активного вещества, являющегося компонентом катализатора, усиливается вследствие их совместного присутствия., Термин коактивация рассматривается как родственный термину промотирование. В качестве примера коактивации можно указать синтез аммиака с железо-молибденовой смесью, оба элемента которой могут служить катализаторами для реакции но смесь равных частей железа и молибдена более эффективна, чем каждый компонент отдельно. В гомогенном катализе, например при гидролизе сложных эфиров, действие солей можно рассматривать как пример простой активации,так как соли сами по себе практически не действуют. Затруднение при определении понятия промотор состоит в том, что смесь двух веществ не во всех случаях много активнее составляющих ее компонентов. Мэкстед [182], изучая окисление аммиака и связывая Выходы с составом смешанных катализаторов (табл. 91), показал, что каталитическая активность не аддитивна составу. [c.358]

    Соотношение (13) совершенно аналогично обычному выражению для температуры плавления бинар ной смеси низкомолекулярных соединений, в которой кристаллизуется лишь один из компонентов. Отличие для полимерной системы заключается в иной форме выражения для активности кристаллизующегося компонента в расплавленной фазе. Согласно соотношению (13), понижение температуры плавления зависит от объемного содержания растворителя в смеси и от значения термодинамических параметров системы полимер — растворитель. При прочих равных условиях, большее понижение температуры плавления должно наблюдаться в случае хорошего (меньше величины Х1), нежели в случае плохого растворителя. [c.49]

    Начальная стадия процесса сополимеризации непредельных связей в молекуле по.иимера и сшивающего мономера детально исследовалась Гордоном, Гривсоном и Мак-Милланом [373]. Эти авторы исследовали реакцию полимеризации в системе метилметакрилат — полиэтиленфума-рат. Были определены константы относительной активности каждого из сополимеризующихся компонентов. В этом исследовании впервые были получены значения относительных активностей двух компонентов, один из которых является полифункциональным мономером . [c.202]

    Необходимо иметь в виду еще одно обстоятельство. Во всех прогнозах обычно принимается, что в бинарной системе возможен один азеотроп — положительный или отрицательный. Соответственно с этим принимается, что и в тройной системе может образовываться один азеотроп. Между тем, недавно появилось сообщение [147] о бинарной системе бензол — перфторбензол, в которой имеются два азеотропа — положительный и отрицательный. Как показывает анализ такое положение возможно при условии 5-об-разной формы зависимости неидеальной доли изобарного потенциала смешения от состава бинарных смесей, обусловливающей наличие экстремальных точек на кривых зависимости коэффициентов активности компонентов от состава. При этом в тройной системе, включающей такую бинарную, должно быть более одного тройного азеотропа. Такие системы на практике редки, но возможны. Поэтому установление строгих закономерностей, определяющих условия образования азеотропных смесей, особенно многокомпонентных, представляет большие трудности. [c.102]

    Активный ионный транспорт в нервной клетке имеет множество функций поддерживает мембранный потенциал возбудимой мембраны (натрий-калиевый насос), регулирует внутриклеточную концентрацию Са + ( a +,Mg2+-ATPaзa) и обеспечивает клетку энергией (РгАТРаза, протонный насос). Натрий-калиевый насос является электрогенным — на каждые три иона На+, транспортируемых наружу, направляются внутрь два иона К" " таким образом, при каледом цикле из клетки забирается по одному положительному заряду. АТР поставляет энергию для обеспечения активного транспорта (против ионного градиента), т. е. осуществляет связь между передачей импульса и метаболизмом нервной клетки. Система ионного транспорта включает АТРазу и ионофор — сложные мембранные белки. Один из белковых компонентов подвергается промежуточному фосфорили-рованию с помощью АТР. Гликозид дигиталиса и уабаин (стро- [c.184]

    Если тройная система образуется компонентами, один из которых поверхностно-активен, а другой — поверхностно-инактивен в бинарной системе с третьим компонентом, то прибавление одного из компонентов может и не вызывать изменения поверхностного натяжения в некотором интервале составов тройной системы. Такое явление, известное под названием концентрационной буфер-ности поверхностного натяжения, многократно наблюдалось в системах типа поверхностно-активное по отношению к воде вещество— поверхиостно-инактивный по отношению к воде электролит— вода при прибавлении электролита [71—91]. Наиболее подробно изучена система СН3ОН—NaBr—Н2О [90] для этой системы обнаружено существование двух водно-спиртовых растворов, прибавление к которым бромида натрия не приводит к изменению поверхностного натяжения на границе с паром в области концентраций между этими растворами прибавление бромида натрия вызывает понижение, а вне этой области — повышение поверхностного натяжения. [c.131]

    Так, например, проявляется синергизм в группе фосфорорганических соединений. Эти соединения могут подавлять активность фермента холинэстеразы, участвующего в осуществлении функций нервно-мышечной системы организма, что является причиной его отравления. В то же время фосфорорганические соединения могут подавлять активность другой группы ферментов— алиэстераз, в частности метилбутиратэстеразы. Если один компонент смеси, обладая большей активностью по отношению к метилбутиратэстеразе, полностью ее связывает, то это создает условия для более сильного ингибирования фермента холинэстеразы вторым компонентом. Иногда влияние синергента проявляется в повышении общей физиологической активности организма, на фоне которого более сильно протекают процессы отравления. [c.34]

    Активный перенос аминокислот — транспорт аминокислот через мембрану против градиента концентрации. Системы активного переноса аминокислот обнаружены в клетках различного типа. Известно пять таких систем, они обеспечивают транспорт ]) нейтральных аминокислот с небольшими молекулами, 2) нейтральных аминокислот с крупными молекулами, 3) основных аминокислот, 4) кислых аминокислот, 5) имин -кислот. Системы активного переноса аминокислот зависят от концентрации ионов Ма+ вне клетки чем выше концентрация указанных ионов, тем выше активность систем переноса. Системы активного переноса аминокислот в клетку против градиеета концентрации состоят из двух структурных компонентов, один из которых является специфическим белком-переносчиком, а второй — обеспечивает передачу ему энергии. [c.5]

    Краевая задача (1) - (6) численно проинтегрирована на ЭВМ разностным методом для п=2 (одновременно адсорбируются два компонента смеси). Произведен анализ особых точек фазового пространства системы уравнений кинетики сорбции, что позволяет судить о характере решений задачи в целом. В ходе вычислительного эксперимента получены решения, которые можно разделить на два принципиально различающихся класса [2]. К первому можно отнести все решения классического вида типа бегущей концентрационной волны, реализуемые в тех случаях, когда один из компонентов явно превосходит фугой либо по скорости, либо по степени активности адсорбции на поверхность скелета пористой среды. Ко второму классу, представляющему наибольший интерес с точки зрения поягверждения конкурентного характера адсорбции, относятся решения в виде различных колебательных процессов. При этом, как показал [c.44]

    Если смесь энантиомеров, которую необходимо разделить, добавить к оптически активной среде, состоящей из чистого энантиомера, то в разделяющей системе поведение анализируемых веществ будет очень различным, что позволяет осуществить их разделение. Различное поведение можно объяснить тем, что в оптически активной среде с оптически активным окружением взаимодействует только один из энамтиомеров, в то время как его зеркальное отражение не взаимодействует. Если различие во взаимодействиях достаточно велико, смесь энамтиомеров разделяется на чистые компоненты. [c.88]

    Искусственные химерные токсины. Таким образом, разнообразные белковые токсины бактериального и растительного происхождения используют один и тот же принцип цитотоксического действия, основанный на двухсубъединичном (или двухдоменном) строении белка одна субъединица (или фрагмент) взаимодействует с мембраной и ответственна за трансмембранный транспорт, а другая освобождается внутрь клетки и проявляет так энзиматическую активность, приводящую к ингибирующей модификации компонента белоксинтезирующей системы. Можно воспользоваться этим принципом живой природы для того, чтобы доставлять внутрь клетки любой энзиматический белок, искусственно сшив (конъюгировав) его с другим подходящим белком, способным взаимодействовать с мембраной. [c.218]

    Многие белки в противоположность приведенным выше примерам связывают ионы металлов либо временно, либо в течение всего времени их существования в организме. Ранее уже упоминался пример временного связывания Са + в связи с протеолитической активацией протромбина и других компонентов системы свертывания крови (см. разд. 24.2.1.2). Иной случай представляют щелочные фосфатазы и фосфокиназы, где, по-видимому, для экранирования отрицательных зарядов фосфатной группы для облегчения атаки атома фосфора нуклеофилом требуется ион двухвалентного металла типа Mg + или Zn +. Более постоянное связывание ионов металлов белками может служить для выполнения одной из указанных ниже целей. Ионы Са + предохраняют трипсин от автолиза. Конкавалин А (см. ниже) не связывает производных глюкозы до тех пор, пока не свяжет предварительно один ион Са + и один ион Мг 2+ на субъединицу. В данном случае катионы, по-видимому, осуществляют подгонку конформации молекулы, образуя центр связывания глюкозы. Ионы металлов принимают также участие в формировании активных центров ферментов. По- [c.561]

    Взаимодействие протеинов можно также исследовать с использованием относительно простых методов, которые позволяют обнаружить это взаимодействие по спектрам ЯМР Н. Примером таких исследований является изучение взаимодействия протеинов в фосфотрансферазной системе. При переносе фосфонатной группы в качестве промежуточного продукта должен образовываться комплекс из НРг и фактор III. Оба протеина независимо от того, находятся ли они в фосфорилированном или в нефосфорилированиом состоянии, в принципе могут взаимодействовать один с другим. Следует ожидать, что протеины могут быть обнаружены в каждой из таких комбинаций, однако взаимодействие будет меньшим, если обе компоненты либо находятся в фосфорилированном состоянии, либо, напротив, в нефосфори-лированном. Если в спектре ЯМР нефосфорилированного фактор III наблюдать за сдвигом резонансной линии гистидина в активном центре в зависимости от концентрации добавляемого нефосфорилированного НРг, то резонансная линия гистидина будет непрерывно смещаться в область сильных полей. Это типичное поведение для случая быстрого обмена между [c.109]

    Система полвиериый катализатор — полимерный субстрат. Немногочисленные работы, посвященные изучению каталитич. превращений полимерных реакционноспособных эфиров в присутствии К. п., обнаружили, что эти превращения напоминают ферментативные реакции. Прежде всего, использование определенного типа полимерных систем дает возможность осуществить гораздо большую степень ассоциации между катализатором и субстратом, чем в случае низкомолекулярных субстратов, а именно эта стадия и отвечает за селективность и, отчасти, за эффективность процесса. Естественно ожидать, что в таких системах для образования прочных ассоциатов достаточно, чтобы каждый компонент содержал очень небольшое число связывающих центров. В общем случае можно считать, что молекулярные ассоциаты образуются тогда, когда смешение двух полимерных р-ров, один из к-рых содержит каталитически активные, а другой — реакционноспособные группы, происходит экзотермически. Такие эффекты обычно наблюдаются,когда между макромолекулами осуществляется взаимодействие кислотно-основного типа. [c.481]

    Имеются примеры ионных регуляторных комплексов, в которых рецептор и ионный канал, по-видимому, находятся в разных молекулах. Так, некоторые ацетилхолиновые рецепторы, найденные в нейронах Aplysia, после связывания с ацетилхолином увеличивают натриевую проводимость. Другие ацетилхолиновые рецепторы того же организма вызывают быстрое возрастание проводимости ионов хлора, тогда как третьи — медленное возрастание калиевой проницаемости [6]. Если принять, что связывающий компонент этих рецепторов один и тот же, что никак не доказано, то он должен действовать в комбинации то с калиевыми, то с натриевыми, то с хлорными каналами [7]. Хотя такие комбинации и казались постоянными, следующие наблюдения привели к выдвижению гипотезы плавающего , или мобильного , рецептора. Согласно этой гипотезе рецепторы не связываются в постоянные комплексы, а плавают в мембране и взаимодействуют с различными активными структурами транспортными системами, ферментами и т. д. (рис. 9.6). Имеется, например, только один тип рецептора для инсулина, который, однако, раздельно регулирует целый ряд мембранных функций транспорт глюкозы, аденилатциклазную, фосфодиэсте-разную, Ка+,К+-АТРазную, Са +-ЛТРазную активности, а также транспорт аминокислот. Напротив, в жировых клетках крыс имеются, по крайней мере, восемь различных рецепторов, и все они регулируют аденилатциклазную активность. Связывание [c.255]

    Произщедение растворимости — основная константа, характеризующая равновесие между осадком и его насыщенным раствором. Если в растворе произведение активностей ионов, образующих осадок, превышает значение /С , начинается осаждение твердой фазы если же это произведение меньше то осадок начинает растворятьсяг Процессы, происходящие в системе, изменяют активности ионов в растворе, так что достигается равновесие, условие которого выражено уравнением (V. 5), Оно показывает, что растворимость ионного кристалличедкого осадка может уменьшаться, если активность одного из компонентов осадка превысит равновес-" ную. Для растворения осадка необходимо, чтобы хотя бы один из ионов его участвовал в процессе, уменьшающем его активность в растворе и вызывающем растворение новой порции твердой фазы. [c.108]

    Иолилигандные комплексы, аддендами в которых могут являться любые две, три или четыре молекулы из широкого набора гетероатомных соединений нефти, очевидно, представляют собой один из наиболее распространенных типов нефтяных компонентов, содержащих поливалентные металлы. Такие комплексы, образующиеся путем координации металлов с атомами 5, N или О гетероорганических молекул, а также я-комплексы металлов или их солей (особенно галоидных) с ароматическими системами, входящие в состав смолистых компонентов нефтей, высоко лабильны и способны к разрушению и динамически равновесным трансформациям при контакте с разнообразными активными агентами (химическими реагентами, растворителями, адсорбентами и пр.). Однако при достаточной экранированности координационного центра лигандами, как, например, в я-комплексах металлоценового (сэндвичевого) типа или во фрагментах, расположенных во внутренних слоях пространственно организованных пачечных асфальтеновых макромолекул [13 14], эти металлосодержащие соединения нефти становятся намного более устойчивыми к действию агентов. Иолилигандные и я-комплексы с [c.144]

    Помимо портланд-цементов существует еще один весьма ценный тип цементов, в котором главными компонентами служат гидравлически активные алюминаты кальция, а кремнезем присутствует только как второстепенный компонент . Область глиноземистых цементов в системе кремнезем — глинозем — окись кальция находится рядом с полями монокальциевого алюмината и пятикальциевого трехалюмината Солаколу выделил две главные области концентраций (фиг. 819), из которых [c.799]


Смотреть страницы где упоминается термин Системы по активности одного компонента: [c.132]    [c.232]    [c.416]    [c.408]    [c.146]    [c.212]    [c.48]    [c.37]    [c.769]    [c.219]    [c.218]   
Гетерогенные равновесия (1968) -- [ c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Активность компонента системы

Активный компонент

Компоненты системы

Расчет активностей и коэффициентов активности компонентов тройных систем по значениям этих величин для одного компонента



© 2025 chem21.info Реклама на сайте