Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование, устойчивость и свойства лиофобных дисперсных систем

    Для дисперсных систем, частицы в которых имеют лиофобную поверхность, образование сольватных слоев не характерно. Чтобы обеспечить их агрегативную устойчивость, применяют стабилизаторы, способствующие увеличению межфазного взаимодействия. В качестве таких стабилизаторов широко применяют ПАВ и ВМС, лиофилизирующие дисперсные системы. Молекулы ПАВ и ВМС, адсорбируясь на поверхности частиц, способствуют уменьшению поверхностного натяжения и образованию сольватного слоя. При стабилизации поверхность частиц приобретает свойства вещества-стабилизатора. Формирование пленки из ВМС происходит значительно медленнее, чем из ПАВ. Очевидно, для такой стабилизации дисперсных систем, как и при стабилизацт1и ионогенными стабилизаторами, необходимо определенное ориентирование молекул ПАВ II ВМС на межфазных поверхностях. [c.339]


    Эмульсии представляют собой дисперсные системы, состоящие из мельчайших капель одной жидкости, распределенной в другой, в которой первая жидкость нерастворима или мало растворима. Размеры капелек составляют несколько (1—50) микрон в поперечнике. Одна из фаз эмульсии обычно вода, другой может быть любая органическая жидкость, не смешивающаяся с водой. Эту жидкость принято называть маслом. Кроме воды и масла, устойчивая эмульсия обязательно содержит третий компонент, эмульгатор, сообщающий агрегативную устойчивость системе. В зависимости от того, какая фаза образует дисперсионную среду, различают эмульсию маслы в воде, м1в, и воды в масле б1м. Эмульсии получаются, главным образом, дисперсионным методом путем встряхивания или перемешивания. Разбавленные (меньше 1%) и концентрированные (больше 1%), эмульсии различаются по природе агрегативной устойчивости. В стабилизации первых главную роль играет электроки-нетический потенциал и связанная с ним толщина сольватной оболочки. Заряженные одноименно капельки отталкиваются и не слипаются. Эти эмульсии приближаются по свойствам к лиофобным коллоидным системам. В концентрированных эмульсиях, имеющих большое практическое значение, устойчивость определяется, главным образом, характером прочной межфазной поверхностной пленки, не разрывающейся при столкновениях. Пленка обычно образуется третьим веществом, эмульгатором. Значение пленки эмульгатора сводится к понижению поверхностного натяжения на границе двух фаз и уменьшению, таким образом, работы образования поверхности раздела при диспергировании, согласно уравнению/ =5 а. При понижении поверх- [c.227]

    Эмульсии [1—5]. Эмульсии — системы из двух жидких фаз, одна из которых дисперсная, или прерывная, а другая фаза не- прерывная, называемая дисперсионной средой. Эмульсии распадаются на два класса. Первый класс — весьма разреженные эмульсии в виде мельчайших капелек одной жидкости, например масла, взвешенных в другой, например в воде. В стабилизации этих эмульсий главную роль играют электрические заряды на поверхности эмульгированной жидкости состояние и свойства поверхностных пленок оказывают меньшее влияние. Эмульсии этого класса приближаются к лиофобным коллоидным системам. Эмульсии второго класса более распространены. В них устойчивость определяется главным образом природой межфазной поверхностной пленки, отделяющей дисперсную фазу от дисперсионной среды. Эту пленку обычно образует третье вещество, отличающееся от обеих объемных фаз и легко растворимое в одной из них. Одна из главных функций этой пленки — понижение межфазного натяжения за счет увеличения адгезии между обеими фазами и, следовательно, уменьшение работы образования поверхности раздела при диспергировании. [c.78]


    П. А. Ребиндер с сотрудниками (с 1923 г.) [89, 90] разработали ряд основных проблем физико-химии поверхностных явлений в дисперсных системах. Таковы проблемы образования и устойчивости дисперсных систем, развития пространственных структур в этих системах, управления их свойствами и соответствующими процессами при помощи введения поверхностно-активных веществ, образующих адсорбционные слои на поверхностях раздела фаз. Эти исследования, проводившиеся в основном в отделе дисперсных систем Института физической химии АН СССР и на кафедре коллоидной химии Московского университета, привели к делению всех дисперсных систем на две большие группы по величине работы образования единицы поверхности раздела фаз (удельной свободной поверхностной энергии ха) 1) лиофобные дисперсии (с высоким межфазным натяжением 12 > т) и 2) лиофильные дисперсии (с низким межфазным натяжением 12 <С т> однако конечным и положительным, обеспечивающим сохранение двухфазности системы > 0). Лиофобные дисперсии всегда термодинамически неустойчивы их частицы самопроизвольно агрегируются, образуя агрегаты различной рыхлости л пространственные структуры, обнаруживая явления коагуляции и коалесценции. Устойчивость таких систем следует понимать лишь в условно-кинетическом смысле как величину, обратную скорости коагуляции или расслоения системы, как медленность ее разрушения в данных условиях. Для обеспечения практической устойчивости лиофобных дисперсий (золей, суспензий, эмульсий, пен) необходима их стабилизация — введение адсорбирующегося вещества — стабилизатора, образующего в дисперсионной среде на поверхности частиц защитную оболочку, которая препятствует коагуляции и коалесценции. Дисперсность таких систем невелика, когда они образуются путем диспергирования размеры капелек в лиофобных эмульсиях не менее 1 мк. Высокая дисперсность может быть достигнута лишь путем конденсации подавлением дальнейшего роста зародышей новой фазы п их стабилизацией. [c.250]

    Проведенное в гл. IV термодинамическое рассмотрение позволило выделить два больших класса дисперсных систем термодинамически устойчивые — лиофильные системы и устойчивые лишь кинетически — лиофобные системы. Анализу строения, условий разрушения и устойчивости лиофобных систем посвяш,ены следующие главы книги в данной главе подробно рассмотрены условия образования лиофильных коллоидных систем, их строение и свойства. [c.217]

    В начале настоящего раздела было выяснено, что так называемые лиофильные золи на самом деле представляют собою истинные растворы, т. е. гомогенные системы с молекулярной или ионной степенью дисперсности, характеризующиеся самопроизвольностью своего образования, термодинамической устойчивостью и обратимостью совершающихся в них процессов. Там же было подчеркнуто, что системы эти в связи с огромными размерами молекул высокомолекулярных соединений обладают и такими свойствами, которые либо сближают их с лиофобными золями и создают видимость неустойчивости и необратимости (роль фактора времени), либо отличают их и от лиофобных золей и от типичных растворов низкомолекулярных веществ. Эти отличия особенно [c.178]

    Большая удельная поверхность и, соответственно, значительный запас свободной энергии обусловливают большее или меньшее взаимодействие дисперсной фазы и дисперсионной среды в гетерогенных системах. Практически такое взаимодействие, по-видимому, нельзя отвергать не только в лиофильных, но и в лиофобных системах. Результатом его является образование межфазной, окружающей дисперсные частицы, прослойки конденсированной среды, физические и физико-химические свойства которой аномальны, не сходны с соответствующими свойствами фазы и среды. Если в систему ввести поверхностно-активное вещество (ПАВ), т. е. вещество, молекулы которого могут адсорбироваться на межфазной границе и понижать поверхностное натяжение и запас свободной энергии, то образуется адсорбционно-сольватный слой. Толщина такого слоя может быть весьма значительной, особенно, если адсорбировались длинноцепочечные молекулы ПАВ или макромолекулы высокомолекулярных соединений (ВМС). Адсорбционно-сольватные слои лиофилизуют дисперсную систему, увеличивая ее устойчивость. [c.9]

    В соответствии со сказанным выше лиофобные твердые дисперсные системы можно рассматривать как кинетически устойчивые системы, имеющие дисперсионную среду с бесконечно большой вязкостью. Вместе с тем их можно представить и как уже скоагулированные системы со сформировавшейся объемной структурой. Такое представление отвечает методам получения большинства твердых материалов, поскольку они обычно образуются пз свободнодисперсных систем или через стадию образования свободнодисперсных систем. Лиофильные твердые дисперсные системы (стабилизированные) отличаются значи-те.тьноп стабильностью свойств во времени. [c.394]


    П. А. Ребиндер с сотрудниками (с 1923 г.) [89, 90] разработалп ряд основных проблем физико-химии поверхностных явлений в дисперсных системах. Таковы проблемы образования и устойчивости дисперсных систем, развития пространственных структур в этих системах, управления их свойствами и соответствующими процессами тгри помощи введения поверхностно-активных веществ, образующих адсорбционные слои на поверхностях раздела фаз. Эти исследования, проводившиеся в основном в отделе дисперсных систем Института физической химии АН СССР и на кафедре коллоидной химии Московского университета, привели к делению всех дисперсных систем на две большие группы но величине работы образования единицы поверхности раздела фаз (удельной свободной поверхностной энергии 1) лиофобные дисперсии (с высоким межфазным натяжением 12 т) и лиофильные дисперсии (с низким межфазным натяжением 012 <С однако конечным и положительным, обеспечиваю-пщм сохранение двухфазности системы > 0). Лиофобные [c.250]

    Если в лиофобных коллоидах, представляющих собой ионостабилизированные системы, основную роль играет электрический фактор устойчивости, то в лиофильных коллоидах существенное влияние на стабильность оказывает сольватация частиц. Образование на поверхности частиц развитых сольватных слоев с особой структурой и свойствами является одной из причин появления расклинивающего давления, препятствующего слипанию частиц [123]. Согласно П. А. Ребиндеру [124], стабилизирующими свойствами обладают образующиеся на поверхности частиц гелеобразные адсорбционно-сольватные слои, которые благодаря своей упругости и механической прочности препятствуют сближению частиц до расстояний эффективного действия вандерваальсовых сил. Близка к представлениям о структурно-механических факторах устойчивости и гипотеза о стерических препятствиях, создаваемых адсорбционными слоями стабилизатора [125]. Все эти точки зрения можно свести к общей идее об определяющей роли сольва-тационного, в частности гидратацнонного, фактора устойчивости в системах с лиофильной поверхностью дисперсных частиц. [c.57]

    С т Р V к т у р н о - м е X а и и ч е с к а я с т а б и л и-зацн я. Проблемы стабилизации дисперсных систем не только в полярных системах, но и в системах с углеводородной средой рассматривались П. А. Ребиндером и его школой. Наиболее общий случай повышения устойчивости лиофобных систем — образование на поверхности частиц прочного адсорбционного слоя или достаточно прочной структуры в дисперсионной среде. В первом случае коагуляция предотвращается тем, что адсорбционный слой, являющийся механическим препятствием, не позволяет частицам приближаться друг к другу на короткие расстояния. Их встреча в результате теплового движения приводит лишь к упругому столкновению адсорбционных слоев. Во втором случае образовавшаяся в системе структурная сетка, свойства которой рассматриваются в гл. УП (стр. 137), ограничивает движение частиц. [c.123]


Смотреть страницы где упоминается термин Образование, устойчивость и свойства лиофобных дисперсных систем: [c.377]    [c.12]    [c.12]    [c.193]   
Смотреть главы в:

Лабораторные работы и задачи по коллоидной химии -> Образование, устойчивость и свойства лиофобных дисперсных систем




ПОИСК





Смотрите так же термины и статьи:

Дисперсная система лиофобная

Дисперсная система устойчивость

Дисперсные системы

Система устойчивая

Системы свойства

Системы устойчивость

Устойчивость к образованию тре ков

Устойчивость лиофобных



© 2025 chem21.info Реклама на сайте