Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения строение молекулы

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]


    Согласно модели строения структурированных жидкостей, молекулы высокомолекулярных соединений в жидкостях, ассоциируя друг с другом, образуют аморфные твердые частицы, что отвечает полному и хаотичному переплетению макромолекул в такой частице. В твердых аморфных и кристаллических телах основную роль при об- [c.58]

    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]

    Наибольшее значение среди химических добавок имеют различного рода природные и синтетические высокомолекулярные соединения (полимеры), молекулы которых построены многократным повторением тех или иных определенных структурных единиц. Будучи по свойствам и строению весьма разнообразными, полимеры имеют и ряд общих свойств. [c.31]

    Органическими полимерами, или высокомолекулярными соединениями, считаются соединения, молекулы которых включают сотни или даже тысячи углеродных атомов — их молекулярная масса может измеряться тысячами и даже миллионами единиц. Характерными признаками молеку.л органических полимеров, помимо их большой массы, являются их цепное строение и гибкость. Молекулы органических полимеров состоят из большого числа одних и тех же групп атомов, последовательно соединенных химическими связями и называемых химическими звеньями цепи. Эти химические звенья часто соответствуют химическому составу исходных низкомолеку- [c.369]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]


    Строение молекул высокомолекулярных соединений. Полимеры, молекулы которых состоят из цепей, содержащих [c.204]

    Прогресс химии нефти, приведший к выявлению природы многих нефтяных компонентов на молекулярном уровне и установлению ряда закономерностей распространения углеводородов и гетероатомных веществ в нефтях различных типов, в наименьшей степени затронул высокомолекулярные соединения (ВМС), сложнейшие по составу и строению и составляющие существенную долю (иногда до 60—70%) нефти. Из-за больших размеров молекул, огромного структурного разнообразия, непреодоленных трудно- [c.181]

    Все растительные и животные организмы содержат белковые вещества. Это сложные высокомолекулярные соединения, которые обладают коллоидными свойствами. Независимо от разнообразного строения и различных размеров молекул отдельные белковые вещества имеют очень близкий элементный состав. Некоторые белки содержат фосфор, железо, иод и т. д. [c.25]

    Следует отметить, что строение звеньев цепных молекул высокомолекулярных соединений отличается от строения молекул соответствующих мономеров, в связи с тем, что в процессе полимеризации происходит рекомбинация связей, приводящая к соединению отдельных звеньев с образованием длинной цепи. Следует также отметить, что при полимеризации происходит образование макромолекул разной длины, а следовательно, и разной массы. Таким образом, молекулярная масса полимера является средней статистической величиной, равно как и степень полимеризации. [c.370]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Углеводородная часть нефтешлама содержит, наряду с неполярными молекулами, высокомолекулярные соединения с гидрофильным строением. На границе с водной фазой она концентрирует дифильные молекулы, так как последние ориентируются гидрофильными участками в сторону полярной воды. [c.206]

    По современным представлениям разрабатываемые смазочные материалы представляют собой сложные коллоидные системы, состоящие из различных по качеству и составу высокомолекулярных соединений (асфальтенов, смол, полициклических ароматически и нафтеновых углеводородов с гетеросоединениями в виде молекул кислорода, серы, азота) и низкомолекулярных углеводородов различного строения. [c.273]

    Огромная молекулярная масса и соответствующие ей силы молекулярного взаимодействия придают полимерам высокую прочность, а эластомерам в то же вре.мя — способность к большим обратимым деформациям. Изменяя строение и длину цепи, чередование звеньев, составляющих молекулу полимера, состав исходных мономеров, условия проведения синтеза и последующую обработку, можно создавать высокомолекулярные соединения с самыми разнообразными свойствами. В полимерах наряду с кристаллическими областями имеются области с неупорядоченным [c.187]

    Гипотетические модели строения молекул высокомолекулярных соединений нефти и их генетической связи [c.111]

    Высокомолекулярная часть нефти представляет собой сложную многокомпонентную, в большинстве случаев коллоидную систему, стойкость которой зависит от химической природы и количественных соотношений основных ее составляющих (углеводороды, смолы и асфальтены). Химический состав и строение соединений, входящих в эту систему, необычайно разнообразны. Различие химического строения молекул довольно сильно проявляется даже в углеводородах и становится почти безграничным при переходе от углеводородов к весьма разнообразным гетероорганическим соединениям, в состав которых наряду с углеродом и водородом входят кислород, сера, азот, а нередко и металлы (N1, V, Ге, Мд, Сг, Т1, Со и др.). [c.12]

    В отличие от молекул большинства природных и синтетических высокомолекулярных веществ, построенных из многократно повторяющихся в определенной последовательности основных структурных звеньев, в молекулах высокомолекулярных соединений нефти не наблюдается строгого чередования одного или нескольких основных структурных звеньев постоянного химического состава и строения. [c.12]


    В молекулах высокомолекулярных соединений нефти такой закономерности не наблюдается. Исключение составляют лишь парафины нормального строения, молекулы которых представляют собой прямые цепи, состоящие из многократно повторяющихся звеньев -СНг— с метильными группами на концах СНд — (СН ) — СН3. [c.13]

    Тем не менее метод инфракрасной спектроскопии оказался довольно мощным и эффективным средством познания химической природы высокомолекулярных компонентов нефти. Его приложение к исследованию строения молекул этих сложных соединений основано на использовании характеристических спектров отдельных групп атомов, входящих в состав молекул. [c.235]

    Смолы более полидисперсны, чем асфальтены [236]. Смолы и асфальтены представляют собой непрерывный ряд разнообразных трудноразделимых высокомолекулярных соединений гибридного строения. Поэтому вводятся термины, обосновывающие некоторый переходный размер молекулы, например легкие асфальтены [236], тяжелые и легкие смолы. Провести четкую границу между смолами и асфальтенами трудно, как и между олигомерными и полимерными соединениями, встречающимися в практике макромолекулярной химии синтетических полимеров. Однако последние полидисперсны только по массе, а смолисто-асфальтеновые вещества полидисперсны и по массе и по составу элементарного звена. [c.268]

    Следует, однако, отметить, что таких полициклических чисто ароматических углеводородов с короткими парафиновыми боковыми цепями в нефтях очень немного, так как строение молекул высокомолекулярных соединений нефти имеет главным образом смешанный (гибридный) характер (см. 6). [c.30]

    Считается, что в аморфных структурах растворы высокомолекулярных соединений точно так же, как и молекулы в обычных жидкостях, имеют параметры ближнего и дальнего порядка. В ближнем порядке молекулы высокомолекулярных соединений ориентированы друг относительно друга параллельно, образуя достаточно плотные и хорошо спрессованные пучки или пачки молекул. Существование таких пачек в растворах высокомолекулярных соединений подтверждается пластичностью растворов полимеров, так как молекулы высокомолекулярных соединений могут по различному располагаться в таких пачках, да и пачки могут принимать различные формы. В нефтяных дисперсных системах структурные группы высокомолекулярных соединений, пучки или пачки, могут легко образоваться из макромолекул, имеющих регулярное строение полициклических и нормальных парафиновых углеводородов, нафтеновых и различных смешанных молекул, а также гетероатомных молекул. [c.59]

    Теории пачечного строения высокомолекулярных соединений позволяют подразделить процесс кристаллизации в растворах высокомолекулярных соединений на несколько стадий. Первая стадия кристаллизации заключается в том, что вначале несколько молекул высокомолекулярных соединений притягиваются друг к другу слабыми межмолекулярными силами и образуют аморфный пакет или пучок молекул. Этот аморфный пакет не кристаллизуется для растворов таких веществ, как целлюлоза и ее эфиры в воде, натуральный каучук и полиизобутилены в жидких углеводородах. [c.59]

    Экспериментально было установлено,что для таких нефтяных фракций как бензин, керосин, легкие газойли температура их испарения ниже температуры начала термического распада молекул, а для тяжелых нефтяных фракций, содержащих различные высокомолекулярные соединения температуры испарения выше температуры их разложения. Очевидно температуры испарения, состав, строение молекул нефтяных фракций взаимосвязаны сложными зависимостями. Исследование этих зависимостей и их научное обоснование являются основной предпосылкой для создания оптимальных условий проведения технологических процессов переработки нефтяного сырья. Важнейшая роль при этом принадлежит слабым взаимодействиям, оказывающим существенное влияние на физические и физико-химические процессы, происходящие в процессе переработки нефтяных систем. [c.98]

Рис. 24. Гипотетическая модель строения молекул высокомолекулярных соединений нефти Рис. 24. <a href="/info/102842">Гипотетическая модель</a> строения молекул высокомолекулярных соединений нефти
    Ранее полимерные вещества представлялись как продукт физической агрегации небольших молекул. Лишь в двадцатых годах XX в. была введена макромолекулярная теория. На основании данных, полученных при гидрировании каучука, Штауднн-гер показал, что его необходимо отнести к типу высокомолекулярных соединений, с молекулой, имеющей форму длинной цепочки. Аналогичное строение было установлено также для поли- [c.276]

    Нефтяные кислоты, выделенные из фракции дистиллятного смазочного масла венесуэльской нефти, исследованы Д. Кнотнеру-сом. Им использован комплекс современных методов разделения и идентификации высокомолекулярных соединений нефти, поэтому полученные данные и сделанные на их основе выводы достаточно достоверны [19, с. 322]. Установлено, что высшие нефтяные кислоты являются карбоновыми, карбоксильная группа которых соединена с углеводородными радикалами, аналогичными (по составу и строению) радикалам в углеводородах тех нефтей, нз которых кислоты выделены. В молекулах кислот содержатся циклопарафиновые, моноароматические, диароматические и серосодержащие углеводородные радикалы. Полиароматические карбоновые кислоты, в молекулах которых содержится более двух бензольных колец, в нефтях пока не обнаружены. [c.37]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Хт.шческое строение, молекулярная масса, структура цепи и вза-нкное расположение молекул определя1эт свойства высокомолекулярных соединений. [c.18]

    Научное и практическое значение исследований, направленных на выяснение химической природы наиболее высокомолекулярной части нефти, трудно переоценить. Эта часть нефти до настоящего времени остается все еще почти неисследованной. Известно лишь, что в ней сконцентрированы углеводороды наиболее сложного строения молекулы их имеют гибридную структуру и отличаются большими размерами (молекулярный вес от 400 до 1000 и выше). Кроме того, в высокомолекулярной части нефти сосредоточено основное количество всех содержащихся в нефтях гетерооргапических соединений (включая смолы и асфальтены) молекулярного веса от 500 до 2000—3000 и выше. Это наиболее сложные из всех содержащихся в нефтях соединений, о свойствах, а тем более о химическом строении которых мы знаем еще очень мало. [c.6]

    Для успешного развития этой новой и весьма обширной области науки и техники потребовалось создать целый арсенал методов научного исследования и новые технологические процессы, с учетом состава, строения и свойств высоконолимерных материалов. В разработке этих методов исследования исключительная роль принадлежит физике, физической химии и коллоидной химии. Высокомолекулярные соединения, содержащиеся в природных нефтях, весьма существенно отличаются ио строению и свойствам от таких классических представителей высокомолекулярных природных и синтетических соединений, как белок, целлюлоза, каучук, эбонит и др., но все же они имеют и много общего с последними. Поэтому многие методы исследования, разработанные в химии высокомолекулярных соединений за последние 25—30 лет, вполне применимы для исследования высокомолекулярных соединений, содержащихся в нефти. Высокомолекулярные соединения, составляющие наиболее тяжелую часть нефти, по размерам молекул относятся к начальной, самой низшей ступени обширной области высокомолекулярных природных и синтетических органических веществ. [c.11]

    Из высокомолекулярных соединений нефти только парафиновы-е углеводороды по форме молекулы соответствуют первому (парафины нормального строения) или второму (разветвленные парафины) типу. Остальные высокомолекулярные соединения нефти, как углеводороды, так и гетероорганические соединения, нельзя отнести ио форме ни к одному из трех приведенных выше геометрических типов молекул. Наиболее правильное представление о форме молекул этих соединений может дать сравнение их с гроздью винограда [5]. Поэтому для характеристики формы молекулы высокомолекулярных соединений нефти, за исключением парафинов, следует ввести четвертый тип — гроздьевидный. Эта форма окажется, по-видимому, более приемлемой, чем три вышеупомянутые, также и для характеристики молекул таких высокомолекулярных природных соединений, как лигнин, природные смолы и др. Со временем появятся, вероятно, и синтетические высокомолекулярные соединения, приближающиеся по структуре молекул к гроздьевидиой форме. [c.14]

    В-третьих, данные о зависимости свойств и реакционной способности высокомолекулярных углеводородов гибридного строения от строения молекулы, полученные на основе исследования синтетических углеводородов бинарных и многокомпонентных смесей, приготовленных из них, служат реперными точками при исследовании фракций высокомолекулярных углеводородов нефти. Эти объективные предпосылки, включая и появление более совершенной экспериментальной техники, появившиеся за последние несколько лет, позволяют более уверенно и оптимистически смотреть на ближайшие перспективы развития исследований высокомолекулярных соединений нефти. В этой связи заслуживают большого внимания недавно опубликованные [ИЗ] результаты исследования 70-градусной фракции высокомолекулярных углеводородов гюргянской нефти. Основная часть парафино-циклопарафиновых углеводородов этой фракции (более-60%, из которых 85% не образуют кристаллического комплекса с карбамидом) не дегидрируется в молекуле их, отвечающей общей формуле С24Н48, содержится 2 пятичленных кольца, остальную часть молекулы (56%) составляют парафиновые С-атомы. [c.247]

    Здесь уместно отметить, что утверждение Квптковского и Петрова [124] о полной непригодности методов структурно-группового анализа для исследования нефтяных высокомолекулярных углеводородов, содержащих ароматические структуры, слишком категорично и недостаточно мотивировано. Их расчеты проведены на примерах сравнительно простых двойных и тройных смесей из синтетических углеродов, не вполне моделирующих сложные многокомпонентные -системы, какими являются даже узкие фракции высокомолекулярных углеводородов нефти. Известно, что чем сильнее отклоняется явление по своим характеристикам от средних значений, тем реже оно повторяется. Во всяком случае, пока нет более точных методов определения строения сложных гибридных структур высокомолекулярных углеводородов нефти, структурно-групповыми методами анализа следует пользоваться, даже если ошибки определений будут составлять 15—20%. Правда, такие отклонения уже легко будет обнаружить по данным элементарного анализа и константам ( , п и др.). Методы структурно-группового анализа дают полуколичественную характеристику, в общем правильно отражающую сочетание структурных элементов в усредненной молекуле многокомпонентных смесей. На примерах индивидуальных синтетических соединений и их смесей надо вести дальнейшие исследования по выяснению закономерностей, связывающих свойства со строением молекулы. [c.252]

    Большой практический интерес представляет изучение процессов деструкции смол и асфальтенообразования из них при нагревании с учетом продолжительности термообработки, температуры, давления окружающей среды различных газов, а также выявление численных значений пороговых температур и концентраций смол в растворах, По мере перехода от смол к асфальтенам происходит повышение их плотности, изменение элементного состава. Кроме этого, плоские молекулы смол [117] превращаются в пространственные, но легко деформируемые молекулы асфальтенов [ 118]. Дальнейшие превращения приводят к образованию продуктов более глубоких форм уплотнения — карбенов и карбоидов. Асфальтены имеют высокую степень конденсированности ядер (3-4 против 2-3 у смол). Установлено, что структурные звенья смол и асфальтенов нефтяных остатков состоят из малореакционных конденсированных ароматических ядер и более реакционных цепей алифатического строения. Наряду с конденсированными ароматическими кольцами в ядре могут находиться и нафтеновые структуры [119], Одним из современных эффективных способов исследования высокомолекулярных соединений нефти является электронный парамагнитный резонанс (ЭПР), [c.114]

    Если макромолекулярпые цепи состоят из большого числа одинаковых элементарных звеньев, то высокомолекулярные соединения называются еще и высокополимерными соединениями, или просто полимерами (от греч. полп — много, мерос — часть). Полимерами часто называют вообще все высокомолекулярные соединения, особенно если их молекулы имеют линейное строение. [c.374]


Смотреть страницы где упоминается термин Высокомолекулярные соединения строение молекулы: [c.9]    [c.356]    [c.184]    [c.30]    [c.35]    [c.6]    [c.13]    [c.14]    [c.14]    [c.25]    [c.53]    [c.301]   
Химия искусственных смол (1951) -- [ c.14 , c.26 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Молекула строение



© 2024 chem21.info Реклама на сайте